人教版八年级下册18.2.1 矩形课后练习题
展开专题18.5矩形的判定
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020春•海淀区校级期中)下列说法正确的是( )
A.有一组对角是直角的四边形一定是矩形
B.一条对角线被另一条对角线垂直平分的四边形是菱形
C.对角互补的平行四边形是矩形
D.对角线相等的四边形是矩形
【分析】由矩形和菱形的判定方法得出A、B、D不正确,C正确,即可得出结论.
【解析】∵有一组对角是直角的四边形不一定是矩形,
∴选项A不正确;
∵两条对角线互相垂直平分的四边形是菱形,
∴选项B不正确;
∵对角互补的平行四边形一定是矩形,
∴选项C正确;
∵对角线相等的平行四边形是矩形,
∴选项D错误;
故选:C.
2.(2020春•临海市期末)如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是( )
A.BE=EO B.EO=12AC C.AC⊥BE D.AE=AF
【分析】先证四边形AECF是平行四边形,再根据矩形的判定、菱形的判定分别对各个选项进行推理论证即可.
【解析】∵四边形ABCD是平行四边形,
∴OA=OC=12AC,OB=OD,
∵BE=DF,
∴OB﹣BE=OD﹣DF,即OE=OF,
∴四边形AECF是平行四边形,
A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;
B、EO=12AC时,EF=AC,
∴四边形AECF为矩形;故选项B符合题意;
C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;
D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;
故选:B.
3.(2020春•德城区校级月考)检查一个门框(已知两组对边分别相等)是不是矩形,不可用的方法是( )
A.测量两条对角线是否相等
B.用重锤线检查竖门框是否与地面垂直
C.测量两条对角线是否互相平分
D.测量门框的三个角是否都是直角
【分析】由矩形的判定、平行四边形的判定,依次判断可求解.
【解析】∵门框两组对边分别相等,
∴门框是个平行四边形,
∵对角线相等的平行四边形是矩形,
故A不符合题意;
∵竖门框与地面垂直,门框一定是矩形;
故B不符合题意,
∵对角线互相平分的四边形是平行四边形,
∴C符合题意,
∵三个角都是直角的四边形是矩形,
故D不符合题意;
故选:C.
4.(2020春•襄汾县期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件不能使平行四边形ABCD变为矩形的是( )
A.OA=OC B.AC=BD C.DA⊥AB D.∠OAB=∠OBA
【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.
【解析】∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
A、OA=OC时,平行四边形ABCD仍然是平行四边形,故选项A符合题意;
B、AC=BD时,平行四边形ABCD是矩形,故选项B不符合题意;
C、DA⊥AB时,∠BAD=90°,
∴平行四边形ABCD是矩形,故选项C不符合题意;
D、∠OAB=∠OBA时,OA=OB,
∴AC=BD,
∴平行四边形ABCD是矩形,故选项D不符合题意;
故选:A.
5.(2020•十堰)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是( )
A.① B.② C.③ D.④
【分析】根据矩形的判定进行分析即可.
【解析】A.AB=BC,邻边相等的平行四边形是菱形,故A不符合题意;
B.AC=BD,对角线相等的平行四边形是矩形,故B符合题意;
C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C不符合题意;
D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D不符合题意.
故选:B.
6.(2019•普陀区二模)如图,▱ABCD的对角线AC、BD交于点O,顺次连接▱ABCD各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC⊥BD;②C△ABO=C△CBO;③∠DAO=∠CBO;④∠DAO=∠BAO,可以使这个新的四边形成为矩形,那么这样的条件个数是( )
A.1个 B.2个 C.3个 D.4个
【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
【解析】顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①∵AC⊥BD,∴新的四边形成为矩形,符合条件;
②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.
∵C△ABO=C△CBO,∴AB=BC.
根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;
③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.
∵∠DAO=∠CBO,∴∠ADO=∠DAO.
∴AO=OD.
∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
④∵∠DAO=∠BAO,BO=DO,
∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,
∴新四边形是矩形.符合条件.
所以①②④符合条件.
故选:C.
7.(2020春•辉县市期末)如图.在△ABC中,∠C=90°,AC=4,BC=3,点P为斜边AB上一动点.过点P作PE⊥AC于E,PF⊥BC于F,连结EF.则线段EF的最小值为( )
A.1.2 B.2.4 C.2.5 D.4.8
【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.
【解析】连接PC,
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=4,BC=3,
∴AB=5,
∴PC的最小值为:AC⋅BCAB=2.4.
∴线段EF长的最小值为2.4.
故选:B.
8.(2018春•邳州市期中)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,则下面条件能判断平行四边形ABCD是矩形的是( )
A.AC=BD B.AC⊥BD C.AO=CO D.AB=AD
【分析】矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.据此分析判断.
【解析】A选项是对角线相等,可判定平行四边形ABCD是矩形.而B、C、D不能.
故选:A.
9.(2019•工业园区一模)如图,在四边形ABCD中,已知AD∥BC,∠BCD=90°,∠ABC=45°,BD平分∠ABC,若CD=1cm,则AC等于( )
A.2cm B.3cm C.2cm D.1cm
【分析】过D作DE⊥BA交BA的延长线于E,根据角平分线的性质得到DE=CD,推出△ADE是等腰直角三角形,得到AE=DE=1,根据勾股定理即可得到结论.
【解析】过D作DE⊥BA交BA的延长线于E,
∵∠BCD=90°,BD平分∠ABC,
∴DE=CD,
∵CD=1,
∴DE=1,
∵AD∥BC,∠ABC=45°,
∴∠EAD=∠ABC=45°,
∴△ADE是等腰直角三角形,
∴AE=DE=1,
∴AD=2,
∵AD∥BC,∠BCD=90°,
∴∠ADC=90°,
∴AC=AD2+CD2=(2)2+12=3,
故选:B.
10.(2020春•金乡县期末)如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是( )
A.3013≤AM<6 B.5≤AM<12 C.125≤AM<12 D.125≤AM<6
【分析】首先证明四边形AEPF是矩形,因为M是EF的中点,推出延长AM经过点P,推出EF=AP,可得AM=12EF=12PA,求出PA的最小值可得AM的最小值,又由AP<AC,即可求得AM的取值范围.
【解析】在Rt△ABC中,∵∠BAC=90°,AB=5,AC=12,
∴BC=52+122=13,
∵PE⊥AB于E,PF⊥AC于F,
∴∠PEA=∠PFA=∠EAF=90°,
∴四边形AEPF是矩形,
∵M是EF的中点,
∴延长AM经过点P,
∴EF=AP,
AM=12EF=12PA,
当PA⊥CB时,PA=5×1213=6013,
∴AM的最小值为3013,
∵PA<AC,
∴PA<12,
∴AM<6,
∴3013≤AM<6,
故选:A.
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2019•黑龙江)如图,在平行四边形ABCD中,在不添加任何辅助线的情况下,请添加一个条件 ∠ABC=90°或AD⊥AB ,使平行四边形ABCD是矩形.
【分析】根据“有一个角是直角的平行四边形是矩形”填空.
【解析】添加条件:∠ABC=90°或AD⊥AB(答案不唯一).
理由:∵四边形ABCD是平行四边形,∠ABC=90°,
∴平行四边形ABCD是矩形(矩形的定义).
故答案是:∠ABC=90°.
12.(2018春•花都区期末)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,若再添加一个条件,就可得平行四边形ABCD是矩形,则你添加的条件是 AC=BD或∠ABC=90° .
【分析】矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.
【解析】若使▱ABCD变为矩形,可添加的条件是:
AC=BD;(对角线相等的平行四边形是矩形)
∠ABC=90°等.(有一个角是直角的平行四边形是矩形)
故答案为:AC=BD或∠ABC=90°.
13.(2020春•潮安区期末)如图,点E,F,G,H分别是BD,BC,AC,AD的中点:下列结论:①EH=EF;②当AB=CD,EG平分∠HGF;③当AB⊥CD时,四边形EFGH是矩形;其中正确的结论序号是 ②③ .
【分析】由三角形中位线定理可得EF∥CD,HG∥CD,EF=12EF,HG=12CD,HE=12AB,AB∥HE,可证四边形是平行四边形,可判断①,由AB=CD可证平行四边形HEFG是菱形,可判断②,由AB⊥CD可证平行四边形HEFG是矩形,可判断③,即可求解.
【解析】∵点E,F,G,H分别是BD,BC,AC,AD的中点,
∴EF∥CD,HG∥CD,EF=12EF,HG=12CD,HE=12AB,AB∥HE,
∴EF=HG,EF∥HG,
∴四边形EFGH是平行四边形,
∵AB不一定等于CD,
∴EH不一定等于EF,故①错误,
∵AB=CD,
∴EH=EF,
∴平行四边形HEFG是菱形,
∴EG平分∠HGF,故②正确,
③∵AB⊥CD,
∴∠ABC+∠BCD=90°,
∵四边形HEFG是平行四边形,
∴GF∥HE∥AB,
∴∠GFC=∠ABC,
∵EF∥CD,
∴∠BFE=∠BCD,
∴∠GFC+∠BCD=90°,
∴∠EFG=90°,
∴平行四边形HEFG是矩形,故③正确,
故答案为:②③.
14.(2018秋•丰顺县期末)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n= 2 时,四边形ABEC是矩形.
【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.
【解析】当∠AFC=2∠D时,四边形ABEC是矩形.
∵四边形ABCD是平行四边形,
∴BC∥AD,∠BCE=∠D,
由题意易得AB∥EC,AB=EC,
∴四边形ABEC是平行四边形.
∵∠AFC=∠FEC+∠BCE,
∴当∠AFC=2∠D时,则有∠FEC=∠FCE,
∴FC=FE,
∴四边形ABEC是矩形,
故答案为:2.
15.(2020春•雨花区校级月考)如图,在平行四边形ABCD中,若∠1=∠2,则四边形ABCD是 矩形 .
【分析】由平行四边形的性质可得AO=CO=12AC,BO=DO=12BD,由等腰三角形的判定可得BO=CO,可得AC=BD,由矩形的判定可得平行四边形ABCD是矩形.
【解析】∵四边形ABCD是平行四边形,
∴AO=CO=12AC,BO=DO=12BD,
∵∠1=∠2,
∴BO=CO,
∴AC=BD,
∴平行四边形ABCD是矩形,
故答案为矩形.
16.(2020春•柘城县期末)如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理 对角线相等的平行四边形是矩形,矩形的四个角都是直角 .
【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.
【解析】这种做法的依据是对角线相等的平行四边形为矩形,
故答案为:对角线相等的平行四边形是矩形,矩形的四个角都是直角.(“矩形的四个角都是直角”没写不扣分)
17.(2020春•房山区期末)在四边形ABCD中,有以下四个条件:
①AB∥CD;②AD=BC;③AC=BD;④∠ADC=∠ABC.
从中选取三个条件,可以判定四边形ABCD为矩形.则可以选择的条件序号是 ①③④ .
【分析】根据全等三角形的判定和性质以及矩形的判定定理即可得到结论.
【解析】当具备①③④这三个条件,能得到四边形ABCD是矩形.理由如下:
∵AB∥CD,
∴∠BAC=∠DCA,
∵∠ABC=∠ADC,AC=CA,
∴△ABC≌△CDA(AAS),
∴∠ACB=∠DCA,
∴AD∥BC,
∴四边形ABCD是平行四边形,
∵AC=BD,
∴四边形ABCD是矩形;
故答案为:①③④.
18.(2019春•江干区期末)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为 矩形 .
【分析】直接利用基本作图方法得出四边形ABCD是平行四边形,进而利用矩形的判定方法得出答案.
【解析】四边形ABCD为矩形.
理由:∵AD=BC,AB=DC,
∴四边形ABCD是平行四边形,
∵∠ABC=90°,
∴平行四边形ABCD是矩形.
故答案为:矩形.
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.(2020•玄武区二模)如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD、EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=40°,则当∠BOD= 80 °时,四边形BECD是矩形.
【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;
(2)由平行四边形的性质得出∠BCD=∠A=40°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.
【解析】(1)证明:∵四边形ABCD为平行四边形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O为BC的中点,
∴BO=CO,
在△BOE和△COD中,
∠OEB=∠ODC∠BOE=∠CODBO=CO,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四边形BECD是平行四边形;
(2)解:若∠A=40°,则当∠BOD=80°时,四边形BECD是矩形.理由如下:
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=40°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=80°﹣40°=40°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四边形BECD是平行四边形,
∴四边形BECD是矩形;
故答案为:80.
20.(2020春•吴中区期末)如图,在菱形ABCD中,对角线AC、BD相交于点O.
(1)若∠BAD=120°,AC=8.求菱形ABCD的周长.
(2)若DE∥AC,AE∥BD.求证:四边形AODE是矩形.
【分析】(1)由菱形的性质得出AD=DC=BC=AB,∠BAO=12∠BAD=60°,证出△ABC是等边三角形,得出AB=BC=AC=8,即可得出答案;
(2)先证四边形AODE是平行四边形,由菱形的性质得出∠AOD=90°,即可得出结论.
【解析】(1)解:∵四边形ABCD是菱形,
∴AD=DC=BC=AB,∠BAO=12∠BAD=60°,
∴△ABC是等边三角形,
∴AB=BC=AC=8,
∴菱形ABCD的周长=4AB=32;
(2)证明:∵DE∥AC,AE∥BD,
∴四边形AODE是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOD=90°,
∴四边形AODE是矩形.
21.(2020春•南京期末)如图,在▱ABCD中,DE平分∠ADB,交AB于点E,BF平分∠CBD,交CD于点F.
(1)求证:DE=BF;
(2)若AD=BD,求证:四边形DEBF是矩形.
【分析】(1)由平行四边形的性质得出∠ADB=∠CBD,由角平分线的定义得出∠EDB=∠DBF,则DE∥BF,可证出结论;
(2)由等腰三角形的性质得出DE⊥AB,则可得出结论.
【解析】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠ADB=∠CBD,
∵DE平分∠ADB,BF平分∠CBD,
∴∠EDB=12∠ADB,∠DBF=12∠CBD,
∴∠EDB=∠DBF,
∴DE∥BF,
又∵AB∥CD,
∴四边形DEBF是平行四边形.
∴DE=BF.
(2)∵AD=BD,DE平分∠ADB,
∴DE⊥AB,
又∵四边形DEBF是平行四边形,
∴四边形DEBF是矩形.
22.(2019秋•东莞市校级期末)如图所示,在▱ABCD中,AE⊥BD于点E,CF⊥BD于点F,延长AE至点G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)求证:四边形EGCF是矩形.
【分析】(1)由AAS证明△ABE≌△CDF即可;
(2)由全等三角形的性质得AE=CF,证出EG=CF,则四边形EGCF是平行四边形,由∠GEF=90°,即可得出四边形EGCF是矩形.
【解析】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD于点E,CF⊥BD于点F,
∴AE∥CF,∠GEF=∠AEB=∠CFD=90°,
在△ABE和△CDF中,∠ABE=∠CDF∠AEB=∠CFDAB=CD,
∴△ABE≌△CDF(AAS);
(2)由(1)得:△ABE≌△CDF,AE∥CF,
∴AE=CF,
∵EG=AE,
∴EG=CF,
∴四边形EGCF是平行四边形,
又∵∠GEF=90°,
∴四边形EGCF是矩形.
23.(2018春•北海期末)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.
(1)若CE=4,CF=3,求OC的长.
(2)连接AE、AF,问当点O在边AC上运动到什么位置时,四边形AECF是矩形?请说明理由.
【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;
(2)根据平行四边形的判定以及矩形的判定得出即可.
【解析】(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∵EF∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴OE=OC,OF=OC,
∴OE=OF;
∵∠OCE+∠BCE+∠OCF+∠DCF=180°,
∴∠ECF=90°,
在Rt△CEF中,由勾股定理得:EF=CE2+CF2=5,
∴OC=OE=12EF=2.5;
(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
连接AE、AF,如图所示:
当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
24.(2020•武威模拟)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
【分析】(1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)根据矩形的性质得到DM⊥AB,再求出∠ADM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答.
【解析】(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
∵点E是AD中点,
∴DE=AE,
在△NDE和△MAE中,∠NDE=∠MAE∠DNE=∠AMEDE=AE,
∴△NDE≌△MAE(AAS),
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:当AM=1时,四边形AMDN是矩形.理由如下:
∵四边形ABCD是菱形,
∴AD=AB=2,
∵平行四边形AMDN是矩形,
∴DM⊥AB,
即∠DMA=90°,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=12AD=1.
数学八年级下册18.1.2 平行四边形的判定习题: 这是一份数学八年级下册<a href="/sx/tb_c88741_t7/?tag_id=28" target="_blank">18.1.2 平行四边形的判定习题</a>,共27页。
人教版八年级下册18.2.1 矩形复习练习题: 这是一份人教版八年级下册18.2.1 矩形复习练习题,文件包含专题185矩形的判定与性质压轴题专项讲练人教版解析版docx、专题185矩形的判定与性质压轴题专项讲练人教版原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
初中数学人教版八年级下册18.2.1 矩形测试题: 这是一份初中数学人教版八年级下册18.2.1 矩形测试题,文件包含专题186矩形的判定专项提升训练解析版人教版docx、专题186矩形的判定专项提升训练原卷版人教版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。