年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高中人教A版数学必修4(45分钟课时作业与单元测试卷):第25课时 平面向量的数量积的坐标表示、模、夹角 Word版含解析

    高中人教A版数学必修4(45分钟课时作业与单元测试卷):第25课时 平面向量的数量积的坐标表示、模、夹角 Word版含解析第1页
    高中人教A版数学必修4(45分钟课时作业与单元测试卷):第25课时 平面向量的数量积的坐标表示、模、夹角 Word版含解析第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年2.4 平面向量的数量积单元测试综合训练题

    展开

    这是一份2020-2021学年2.4 平面向量的数量积单元测试综合训练题,共4页。试卷主要包含了选D等内容,欢迎下载使用。
    25课时 平面向量的数量积的坐标表示夹角       课时目标1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算2会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直3能运用数量积的坐标求出两个向量夹角的余弦值   识记强化1a(x1y1)b(x2y2)a·bx1x2y1y2.2若有向线段A(x1y1)B(x2y2)|(xy)||.3a(x1y1)b(x2y2)abx1x2y1y20.4两向量a(x1y1)b(x2y2)则求两向量的夹角θ的公式为cosθ.    课时作业 一、选择题             1设向量a(x,1)b(4x)abx的值是(  )A±2   B0C.-2  D2答案:B解析:ab,得a·b0,即4xx0,解得x0,故选B.2已知向量a(0,-2)b(1)则向量ab方向上的投影为(  )A.     B3C.-  D.-3答案:D解析:向量ab方向上的投影为=-3.D.3已知向量a(k,3)b(1,4)c(2,1)(2a3b)c则实数k的值为(  )A.-  B0C3    D.答案:C解析:2a3b(2k3,-6)(2a3b)c(2a3b)·c0,即(2k3)×2(6)0,解得k3.4A(1,2)B(2,3)C(3,5)ABC(  )A直角三角形  B锐角三角形C钝角三角形  D不等边三角形答案:C解析:A(1,2)B(2,3)C(3,5)(1,1)(4,3)cosA=-0∴∠A为钝角,ABC为钝角三角形5若向量a(x1,2) 和向量b(1,-1)平行|ab|(  )A.  B.C.   D.答案:C解析:由题意得,-(x1)2×10x=-3.ab(1,1)|ab|6如图在等腰直角三角形AOBabOAOB1CAB上靠近点A的四等分点CAB的垂线lP为垂线上任意一点pp·(ba)(  )A  B.C.-  D.答案:A解析:因为在等腰直角三角形AOB中,abOAOB1,所以|a||b|1a·b0.由题意,可设=-(ba)λ·(ba)λR所以p·(ba)=-(ba)·(ba)(ba)·(ba)=-(ba)2(|b|2|a|2)=-(|a|2|b|22a·b)=-(110)=-.二、填空题7已知a(1,2)b(x,4)a·b10|ab|________.答案:解析:由题意,得a·bx810x2ab(1,-2)|ab|.8已知点A(4,0)B(0,3)OCAB于点CO为坐标原点·________.答案:解析:设点C的坐标为(xy),因为OCAB于点C解得·4x.9若平面向量a(log2x,-1)b(log2x,2log2x)则满足a·b<0的实数x的取值集合为________答案:解析:由题意可得(log2x)2log2x2<0(log2x1)(log2x2)<0,所以-1<log2x<2,所以<x<4.三、解答题10已知O为坐标原点(2,5)(3,1)(6,3)则在线段OC上是否存在点M使得若存在求出点M的坐标若不存在请说明理由解:假设存在点Mλ(6λ3λ)(0λ1)(26λ53λ)(36λ13λ)(26λ)(36λ)(53λ)(13λ)045λ248λ110解得λλ.(2,1).存在M(2,1)M满足题意11已知平面向量a(sinα1)b(1cosα),-<α<.(1)abα(2)|ab|的最大值解:(1)由已知a·b0sinαcosα0tanα=-1.<α<α=-.(2)由已知得|ab|2a2b22a·bsin2α1cos2α12(sinαcosα)32sin.<α<<α<<sin11<|ab|2321<|ab|1|ab|的最大值为1.    能力提升 12a(1,0)b(cosθsinθ)θ|ab|的取值范围是(  )A[0]  B[0)C[1,2]  D[2]答案:D解析:|ab|2(ab)2a22a·bb222cosθ2(1cosθ)θcosθ[0,1]22(1cosθ)4.|ab|2.13已知a(,-1)b()且存在实数kt使得xa(t23)by=-katbxy试求的最小值解:由题知|a|2|b|1a·b×1×0ab.xy[a(t23)b]·(katb)0ka2(t33t)b2(tt2k3k)a·b0k|a|2(t33t)b20.|a|2|b|1k.(t24t3)(t2)2.即当t=-2有最小值. 

    相关试卷

    数学必修42.4 平面向量的数量积一课一练:

    这是一份数学必修42.4 平面向量的数量积一课一练,共4页。试卷主要包含了选D等内容,欢迎下载使用。

    高中数学人教版新课标A必修42.4 平面向量的数量积同步测试题:

    这是一份高中数学人教版新课标A必修42.4 平面向量的数量积同步测试题,共4页。试卷主要包含了选D等内容,欢迎下载使用。

    高中数学人教版新课标A必修4第二章 平面向量2.2 平面向量的线性运算当堂检测题:

    这是一份高中数学人教版新课标A必修4第二章 平面向量2.2 平面向量的线性运算当堂检测题,共3页。试卷主要包含了所以θ=45°等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map