高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)巩固练习
展开能 力 提 升
一、选择题
1.(四川高考)将函数y=sinx的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )
A.y=sin(2x-) B.y=sin(2x-)
C.y=sin(x-) D.y=sin(x-)
[答案] C
[解析] 函数y=sinx的图象上的点向右平移个单位长度可得函数y=sin(x-)的图象;横坐标伸长到原来的2倍(纵坐标不变)可得函数y=sin(x-)的图象,所以所求函数的解析式是y=sin(x-).
2.(2013·山东理)将函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )
A. B. C.0 D.-
[答案] B
[解析] 本题考查了三角函数的奇偶性、图象变换等知识.
由已知将函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到的函数解析式为y=sin[2(x+)+φ]=sin(2x++φ),由于此函数为偶函数,则φ+=kπ+,k∈Z,φ=kπ+,k∈Z,令k=0,∴φ=.
3.(湖南高考)将函数y=sinx的图象向左平移φ(0≤φ<2π)个单位后得到函数y=sin(x-)的图象,则φ等于( )
A. B.
C. D.
[答案] D
[解析] 由题意,得sin(x+φ)=sin(x-),又0≤φ<2π,故φ=.
4.函数y=-sin的图象与x轴各个交点中离原点最近的一点是( )
A. B.
C. D.
[答案] A
[解析] 由4x+=kπ得,x=-,k=0时,得点,k=1时得点,故选A.
5.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0)在一个周期内简图时,列表如下:
ωx+φ | 0 | π | 2π | ||
x | |||||
y | 0 | 2 | 0 | -2 | 0 |
则有( )
A.A=0,ω=,φ=0 B.A=2,ω=3,φ=
C.A=2,ω=3,φ=- D.A=1,ω=2,φ=-
[答案] C
[解析] 由表格得A=2,π-=,
∴ω=3.∴ωx+φ=3x+φ.
当x=时,3x+φ=+φ=0,∴φ=-.
6.(2012全国高考浙江卷)把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向右平移1个单位长度,再向下平移1个单位长度,得到的图像是( )
[答案] B
[解析] 把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y1=cosx+1,向右平移1个单位长度得:y2=cos(x-1)+1,再向下平移1个单位长度得:y3=cos(x-1).令x=0,得:
y3>0;x=+1,得:y3=0;观察即得答案.
二、填空题
7.把函数y=3sin的图象向右平移个单位长度,再向下平移1个单位长度,则得到的函数的解析式是________.
[答案] y=3sin2x-1
[解析] 函数y=3sin的图象向右平移个单位长度得函数y=3sin=3sin2x,再向下平移1个单位长度得y=3sin2x-1.
8.将函数f(x)的图象向右平移个单位长度后,再向上平移1个单位长度得函数y=2sin的图象,则f(x)=________.
[答案] 2sin-1
[解析] 将y=2sin的图象向左平移个单位长度,得函数y=2sin=2sin的图象,再向下平移一个单位长度,得函数y=2sin-1的图象,即f(x)=2sin-1.
三、解答题
9.函数y=f(x)的横坐标伸长到原来的2倍,再向左平移个单位长度,所得到的曲线是y=sinx的图象,求函数y=f(x)的解析式.
[解析]
y=sin(x-)
y=sin(2x-)=-cos2x.
即f(x)=-cos2x.
10.(广东揭阳第一中学2012-2013期中)已知函数f(x)=3sin(x-),x∈R.
(1)列表并画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)将函数y=sinx的图象作怎样的变换可得到f(x)的图象?
[解析] (1)函数f(x)的周期T==4π
由x-=0,,π,,2π,
解得x=,,,,.
列表如下:
x | |||||
x- | 0 | π | 2π | ||
3sin(x-) | 0 | 3 | 0 | -3 | 0 |
描出五个关键点并光滑连线,得到一个周期的简图.
图象如下:
(2)方法一:先把y=sinx的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f(x)的图象.
方法二:先把y=sinx的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来2倍,再把图象向右平移个单位,得到f(x)的图象.
11.将函数y=lgx的图象向左平移一个单位长度,可得函数f(x)的图象;将函数y=cos(2x-)的图象向左平移个单位长度,可得函数g(x)的图象.
(1)在同一直角坐标系中画出函数f(x)和g(x)的图象.
(2)判断方程f(x)=g(x)解的个数.
[解析] 函数y=lgx的图象向左平移一个单位长度,
可得函数f(x)=lg(x+1)的图象,即图象C1;函数y=cos(2x-)的图象向左平移个单位长度,可得函数g(x)=cos[2(x+)-]=cos2x的图象,即图象C2.
(1)画出图象C1和C2的图象如图
(2)由图象可知:两个图象共有7个交点.
即方程f(x)=g(x)解的个数为7.
高中数学高考第4讲 函数y=Asin(ωx+φ)的图象及应用: 这是一份高中数学高考第4讲 函数y=Asin(ωx+φ)的图象及应用,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)课后作业题: 这是一份高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)课后作业题,共6页。
人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)第1课时习题: 这是一份人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)第1课时习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。