![高中人教A版数学必修4:第26课时 平面向量的应用举例 Word版含解析第1页](http://img-preview.51jiaoxi.com/3/3/5944652/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中人教A版数学必修4:第26课时 平面向量的应用举例 Word版含解析第2页](http://img-preview.51jiaoxi.com/3/3/5944652/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学人教版新课标A必修42.5 平面向量应用举例练习题
展开
这是一份高中数学人教版新课标A必修42.5 平面向量应用举例练习题,共5页。
第26课时 平面向量的应用举例 课时目标1.体会向量是解决处理几何、物理问题的工具.2.掌握用向量方法解决实际问题的基本方法. 识记强化1.向量方法解决几何问题的“三步曲”.(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.2.由于力、速度是向量,它们的分解与合成与向量的减法与加法类似,可以用向量的方法解决. 课时作业一、选择题1.已知点A(-2,-3),B(2,1),C(0,1),则下列结论正确的是( )A.A,B,C三点共线B.⊥C.A,B,C是等腰三角形的顶点D.A,B,C是钝角三角形的顶点答案:D解析:∵=(-2,0),=(2,4),∴·=-4<0,∴∠C是钝角.2.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=( )A.(-1,-2) B.(1,-2)C.(-1,2) D.(1,2)答案:D解析:由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).3.在四边形ABCD中,若=-,·=0,则四边形为( )A.平行四边形 B.矩形C.等腰梯形 D.菱形答案:D解析:由=-知四边形ABCD是平行四边形,又·=0,∴⊥,∴此四边形为菱形.4.已知一条两岸平行的河流河水的流速为2 m/s,一艘小船以垂直于河岸方向10 m/s的速度驶向对岸,则小船在静水中的速度大小为( )A.10 m/s B.2 m/sC.4 m/s D.12 m/s答案:B解析:设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1,∴v2=v-v1,v·v1=0,∴|v2|==2(m/s).5.人骑自行车的速度为v1,风速为v2,则逆风行驶的速度为( )A.v1-v2 B.v2-v1C.v1+v2 D.|v1|-|v2|答案:C解析:对于速度的合成问题,关键是运用向量的合成进行处理,逆风行驶的速度为v1+v2,故选C.6.点O在△ABC所在平面内,给出下列关系式:①++=0;②·=·=0;③(+)·=(+)·=0.则点O依次为△ABC的( )A.内心、重心、垂心B.重心、内心、垂心C.重心、内心、外心D.外心、垂心、重心答案:C解析:①由于=-(+)=-2,其中D为BC的中点,可知O为BC边上中线的三等分点(靠近线段BC),所以O为△ABC的重心;②向量,分别表示在AC和AB上取单位向量和,它们的差是向量,当·=0,即OA⊥B′C′时,则点O在∠BAC的平分线上,同理由·=0,知点O在∠ABC的平分线上,故O为△ABC的内心;③+是以,为边的平行四边形的一条对角线,而是该四边形的另一条对角线,·(+)=0表示这个平行四边形是菱形,即||=||,同理有||=||,于是O为△ABC的外心.二、填空题7.已知两个粒子A、B从同一点发射出来,在某一时刻,它们的位移分别为va=(4,3),vb=(3,4),则va在vb上的投影为________.答案:解析:由题知va与vb的夹角θ的余弦值为cosθ==.∴va在vb上的投影为|va|cosθ=5×=.8.已知点A(0,0),B(,0),C(0,1).设AD⊥BC于D,那么有=λ,其中λ=________.答案:解析:如图||=,||=1,||=2,由于AD⊥BC,且=λ,所以C、D、B三点共线,所以=,即λ=.9.在四边形ABCD中,已知=(4,-2),=(7,4),=(3,6),则四边形ABCD的面积是________.答案:30解析:=-=(3,6)=,∵·=(4,-2)·(3,6)=0,∴⊥,∴四边形ABCD为矩形,||=,||=,∴S=||·||=30.三、解答题10.如图,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线.证明:依题意,得=,==(+).∵=-,∴=-.∵=-=-,∴=3,即∥.又,有公共点M,∴M,N,C三点共线.11.两个力F1=i+j,F2=4i-5j作用于同一质点,使该质点从点A(20,15)移动到点B(7,0)(其中i, j分别是与x轴、y轴同方向的单位向量).求:(1)F1,F2分别对该质点做的功;(2)F1,F2的合力F对该质点做的功.解:=(7-20)i+(0-15)j=-13i-15j.(1)F1做的功W1=F1·s=F1·=(i+j)·(-13i-15j)=-28;F2做的功W2=F2·s=F2·=(4i-5j)·(-13i-15j)=23.(2)F=F1+F2=5i-4j,所以F做的功W=F·s=F·=(5i-4j)·(-13i-15j)=-5. 能力提升 12.如图,作用于同一点O的三个力、、处于平衡状态,已知||=1,||=2,与的夹角为,则的大小________.答案:解析:∵、、三个力处于平衡状态,∴++=0即=-(+),∴||=|+|====.13.已知A(2,1)、B(3,2)、D(-1,4).(1)求证:⊥;(2)若四边形ABCD为矩形,试确定点C的坐标,并求该矩形两条对角线所成的锐角的余弦值. 解:(1)证明:∵A(2,1),B(3,2),D(-1,4),∴=(1,1),=(-3,3).又∵·=1×(-3)+1×3=0,∴⊥.(2)∵四边形ABCD为矩形,且AB⊥AD,∴=.设C(x,y),则(-3,3)=(x-3,y-2),,∴∴点C(0,5).又∵=(-2,4),=(-4,2),∴·=(-2)×(-4)+4×2=16.而||==2 ,||==2 ,设与的夹角为θ,则cosθ===∴该矩形两条对角线所成锐角的余弦值为.
相关试卷
这是一份高中数学人教版新课标A必修4第二章 平面向量2.2 平面向量的线性运算当堂检测题,共3页。试卷主要包含了所以θ=45°等内容,欢迎下载使用。
这是一份人教版新课标A第二章 平面向量2.3 平面向量的基本定理及坐标表示课后测评,共3页。试卷主要包含了)),∴E).,M.同理N∴eq \)=-=.等内容,欢迎下载使用。
这是一份高中人教版新课标A2.3 平面向量的基本定理及坐标表示同步达标检测题,共4页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)