|试卷下载
终身会员
搜索
    上传资料 赚现金
    2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题(解析版)
    立即下载
    加入资料篮
    2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题(解析版)01
    2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题(解析版)02
    2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题(解析版)03
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题(解析版)

    展开
    这是一份2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题(解析版),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2020届陕西省宝鸡中学高三上学期第一次模拟数学(文)试题

     

     

    一、单选题

    1.已知集合,集合,则   

    A B C D

    【答案】A

    【解析】根据集合的交集运算,化简即可求得.

    【详解】

    因为集合,集合

    由集合的交集运算可知

    故选:A

    【点睛】

    本题考查了集合交集的简单运算,属于基础题.

    2为虚数单位,复数   

    A B C2 D

    【答案】B

    【解析】根据复数的乘法运算,展开化简即可求解.

    【详解】

    由复数的乘法运算可得

    故选:B

    【点睛】

    本题考查了复数的乘法与加法运算,属于基础题.

    3.已知向量,向量,向量,则实数的值为(   

    A2 B-2 C D

    【答案】A

    【解析】根据向量的加法运算,先求得,再由向量垂直的坐标关系即可求得的值.

    【详解】

    向量,向量,向量

    根据向量的数乘和加法的坐标运算可得

    因为

    由向量垂直的关系可知

    解得

    故选:A

    【点睛】

    本题考查了向量的数乘运算与加法运算,向量垂直的坐标关系,属于基础题.

    4.观察下列各式:,则   

    A47 B76 C121 D123

    【答案】A

    【解析】根据数与式的归纳推理,可知从第三项开始后一项等于前两项的和,即可得.

    【详解】

    ,,,,

    可知从第三项开始后一项等于前两项的和

    所以,

    故选:A

    【点睛】

    本题考查了数与式的归纳推理的应用,找出规律是解决此类问题的关键,属于基础题.

    5.某篮球教练对甲乙两位运动员在近五场比赛中的得分情况统计如下图所示,根据图表给出如下结论:(1)甲乙两人得分的平均数相等且甲的方差比乙的方差小;(2)甲乙两人得分的平均数相等且甲的方差比乙的方差大;(3)甲的成绩在不断提高,而乙的成绩无明显提高;(4)甲的成绩较稳定,乙的成续基本呈上升状态;结论正确的是(    )

    A.(1)(3 B.(1)(4 C.(2)(3 D.(2)(4

    【答案】C

    【解析】根据图示,求得甲乙两人的平均数,由成绩的变化趋势和范围,即可判断方差的大小及稳定情况.

    【详解】

    由图示可知,甲五次得分情况分别为:0,3,2,4,6.五次得分的平均值为

    乙五次得分情况分别为:3,4,2,2,4.五次得分的平均值为

    甲乙两人得分的平均数相等,因为乙得分的波动范围小,所以乙的方差小,成绩稳定.

    从折线图可知,甲的成绩在不断提高,乙的成绩没有显著提高.

    结合四个选项可知, (2)(3)为正确选项

    故选:C

    【点睛】

    本题考查了折线图的应用,平均数的计算与方差大小的判断,属于基础题.

    6.已知条件pk=;条件q:直线y= kx+2与圆x2+y2=1相切,则pq的( )

    A充分不必要条件

    B必要不充分条件

    C充分必要条件

    D既不充分也不必要条件

    【答案】A

    【解析】【详解】

    时,圆心到直线的距离为,所以直线与圆相切;

    当直线与圆相切时,由

    所以则pq的充分不必要条件,

    故选A.

    7.已知函数,则函数的大致图象是(   

    A B

    C D

    【答案】D

    【解析】画出函数的图像,根据的图像与关于轴对称,即可得的图像.

    【详解】

    函数

    的图像如下图所示:

    因为的图像与关于轴对称,所以的图像如下图所示:

    故选:D

    【点睛】

    本题考查了分段函数图像的画法,函数图像关于轴对称的画法,属于基础题.

    8.已知椭圆的左右焦点分别为,点在椭圆上,且,则的面积为(   

    A B C D

    【答案】B

    【解析】根据椭圆的标准方程及椭圆的定义,可得焦距,由勾股定理逆定理可判断为直角三角形,进而求得的面积.

    【详解】

    的左右焦点分别为,,在椭圆上,

    所以

    所以

    因为

    所以是以为斜边的直角三角形

    故选:B

    【点睛】

    本题考查了椭圆的标准方程及定义,焦点三角形面积的求法,利用勾股定理的逆定理判断三角形形状,属于基础题.

    9.设函数的图像向左平移个单位,再将图像上所有点的横坐标不变纵坐标变为原来的3倍得到的图像,则上的最大值为(   

    A3 B C D1

    【答案】A

    【解析】根据三角函数图像的变换,可得的解析式.结合正弦函数的图像与性质,即可求得在上的最大值.

    【详解】

    函数

    的图像向左平移个单位,可得;再将图像上所有点的横坐标不变纵坐标变为原来的3倍可得

    因为

    所以当,时取得最大值

    最大值为

    故选:A

    【点睛】

    本题考查了三角函数图像的平移伸缩变换,正弦函数的图像与性质的综合练习,属于基础题.

    10.已知,则   

    A B C D

    【答案】A

    【解析】根据诱导公式化简,利用正弦二倍角公式展开.结合同角三角函数关系式即可化简求值.

    【详解】

    由诱导公式及正弦二倍角公式化简可得

    可得

    ,两边同时平方可得

    由同角三角函数关系式

    由上述两式可得

    故选:A

    【点睛】

    本题考查了同角三角函数式的化简求值,诱导公式及正弦二倍角公式的应用,属于基础题.

    11.已知双曲线)的左右焦点分别为,过且垂直于轴的直线与双曲线交于两点,若为等腰直角三角形,则该双曲线的离心率为(   

    A2 B C D

    【答案】C

    【解析】根据双曲线的对称性可知若为等腰直角三角形,,进而由通径长与焦距关系求得双曲线的离心率.

    【详解】

    双曲线,)的左右焦点分别为,为等腰直角三角形

    由双曲线的对称性可知

    由等腰直角三角形性质可得

    化简可得,由双曲线中

    可得

    同时除以可得

    解得

    因为

    所以

    故选:C

    【点睛】

    本题考查了双曲线的标准方程与几何性质的应用,双曲线离心率的求法,属于基础题.

    12.若过点可作曲线的三条切线,则实数的取值范围为(   

    A B

    C D

    【答案】B

    【解析】设出切点坐标,利用导数求得切线的斜率,再用两点式表示出斜率.令两个斜率相等,即可得关于切点横坐标的方程,分离参数后研究三次函数的极值情况即可求得的取值范围.

    【详解】

    过点作曲线的切线

    设切点坐标为

    则过切点的直线方程的斜率为

    过切点的斜率为

    化简可得

    ,

     

    解得

    , ,所以单调递增

    , ,所以单调递减

    , ,所以单调递增

    画出函数图像如下图所示:

    所以当, 取得极大值为

    所以当, 取得极小值为

    所以若有三个不同交点,

    此时满足过点可作曲线三条切线

    故选:B

    【点睛】

    本题考查了导数的几何意义与切线方程的应用,利用导数研究函数单调性、极值和最值,属于中档题.

     

     

    二、填空题

    13.中国剪纸是一种用剪刀或刻刀在纸上剪封花纹,用于装点生活或配合其它民俗活动的民间艺术,蕴含了极致的数学美和丰富的文化信息.下图是一个半径为2个单位的圆形中国剪纸图案,为了测算图中黑色部分的面职,在圆形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分面积是__________

    【答案】

    【解析】根据几何概型概率的计算方法即可求得黑色部分的面积.

    【详解】

    半径为2个单位的圆形

    面积为

    根据几何概型概率计算公式可知,设黑色部分面积为

    ,

    解得

    故答案为:

    【点睛】

    本题考查了几何概型概率的计算公式用法,属于基础题.

    14.已知定义在上的奇函数,满足,当时,,则的值为_____.

    【答案】2

    【解析】根据可知函数为周期函数,并求得周期,结合奇函数的性质即可求值.

    【详解】

    因为

    ,代入可得

    为周期为的周期函数

    为定义在上的奇函数,

    所以

    故答案为:

    【点睛】

    本题考查了奇函数的性质及应用,周期函数的判断及求值,属于基础题.

    15.三角形的内角的对边分别为,已知,则__________的面积为________

    【答案】       

    【解析】先由余弦定理求得的值,再根据三角形面积即可求得.

    【详解】

    由余弦定理可知,

    代入可得

    化简得,

    所以

    由三角形面积公式可得

    代入可得

    故答案为: ;

    【点睛】

    本题考查了余弦定理在解三角形中的应用,三角形面积的求法,属于基础题.

    16.如图所示,三棱锥中,平面,的中点,求异面直线所成角的余弦值___

    【答案】

    【解析】中点,连接,则可得即为所成角.由垂直关系可分别求得的三边长,再由余弦定理即可求得的余弦值.

    【详解】

    因为三棱锥,平面,,

    为等边三角形

    所以

    中点, 连接.即为所成角,如下图所示:

    则在,由余弦定理可知

    代入可得

    解得

    即异面直线所成角的余弦值为

    故答案为:

    【点睛】

    本题考查了异面直线夹角的求法,余弦定理解三角形中的应用,属于基础题.

     

    三、解答题

    17.如图四棱锥中,底面 正方形,中点.

    1)求证:平面

    2)已知平面,求三棱锥体积.

    【答案】1)证明见解析;(2

    【解析】(1)连接,连接,根据中位线定理即可证明,从而证明平面;

    (2)根据,由三棱锥体积公式即可求解.

    【详解】

    (1)连接,连接

    ,平面,平面

    所以平面

    (2)的中点,连接,

    平面

    .

    【点睛】

    本题考查了直线与平面的平行判定,三棱锥体积的求法,属于基础题.

    18.某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组: ,并整理得到如下频率分布直方图:

    )从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

    )已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

    )已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

    【答案】(1)0.4.

    (2)20.

    (3) .

    【解析】【详解】

    分析:(1)根据频率分布直方图可知,即可求解样本中分数不小于70的频率,进而得到

    分数小于70的概率;

    (2)根据题意,根据样本中分数不小于50的频率为,求得分数在区间内的人数为5人,进而求得总体中分数在区间内的人数;

    3)由题意可知,样本中分数不小于70的学生人数为60人,求得样本中分数不小于70的男生人数,即可求解.

    详解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为

    (0.02+0.04)×10=0.6 ,

    样本中分数小于70的频率为1-0.6=0.4.

    从总体的400名学生中随机抽取一人其分数小于70的概率估计为0.4

    (2)根据题意,样本中分数不小于50的频率为

    分数在区间内的人数为

    所以总体中分数在区间内的人数估计为

    3)由题意可知,样本中分数不小于70的学生人数为

    所以样本中分数不小于70的男生人数为

    所以样本中的男生人数为,女生人数为,男生和女生人数的比例为

    点睛:本题主要考查了用样本估计总体和频率分布直方图的应用,其中对于用样本估计总体主要注意以下两个方面:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法;2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.

    19.已知等差数列满足,等比数列的首项为2,公比为.

    1)若,问等于数列中的第几项?

    2)若,数列的前项和分别记为的最大值为,试比较的大小.

    【答案】(1) (2)

    【解析】(1)根据等差数列的通项公式,即可求得数列的通项公式.根据等比数列的首项与公比,求得等比数列的通项公式,进而可求得.即可求出等于数列中项.

    (2)根据等差数列的求和公式即可求得等差数列前项和的最大值为.由等比数列的前项和公式求得的值,即可比较的大小.

    【详解】

    (1) 因为等差数列满足

    ,所以等差数列的公差

    ,代入可得

    所以

    当等比数列的首项为2,公比为.

    所以

    所以当

    解得

    等于数列中的第16

    (2) 等比数列的首项为2,

    可得

    又等差数列代入可得

    所以当, 的最大值为

    所以

    【点睛】

    本题考查了等差数列与等比数列的通项公式与求和公式的应用,等差数列前n项和的最值求法,属于基础题.

    20.已知.

    1)讨论的单调性;

    2)若时,恒成立,求实数的最大值.

    【答案】1递增,递减.;(21

    【解析】(1)先求得导函数,并令,求得两个极值点.在定义域内讨论导函数的符号,即可求得函数的单调区间;

    (2)通过对不等式转化,即可分离参数,构造函数,利用导函数求得的最小值,即可求得的最大值.

    【详解】

    (1)∵的定义域为,

    ,,,可得到下表:

    0

    极大值

     

     

     

    上递增,上递减

    (2),

    化简可得

    ,只需

    ,由于,所以上递增

    ,

    存在唯一的,使得

    易知在区间上递减,在区间上递增

    ,两边取对数得

    ,的最大值为1

    【点睛】

    本题考查了利用导数研究函数的单调性,根据导函数研究函数的极值与最值,不等式中参数取值范围的求法,构造函数求最值形式,综合性强,属于难题.

    21.已知动圆与直线相切,且与圆外切.

    1)求动圆圆心轨迹的方程;

    2)已知过点的直线:与曲线交于两点,是否存在常数,使得恒为定值?

    【答案】1;(2)存在

    【解析】(1)根据两点间距离公式及相切条件,即可求得动圆圆心的轨迹方程.

    (2)将直线方程与抛物线方程联立,后可得关于的一元二次方程,表示成韦达定理形式.由两点间距离公式,表示出,代入韦达定理形式,即可得的表达式.并用换元法,求得的值即可.

    【详解】

    (1)化为标准方程为

    则圆心为,半径为

    设动圆圆心坐标为,由动圆与直线相切,且与圆外切

    两边平方整理得

    所以动圆圆心轨迹的方程为

    (2)由题意可将直线的方程为与抛物线联立

    消去

    ,

    上式对任意恒为定值,,

    整理得

    ,解得

    此时

    存在定点,满足题意

    【点睛】

    本题考查了轨迹方程的求法,直线与抛物线的位置关系,抛物线中的定值问题解法,化简过程较为繁琐,属于难题.

    22.已知直线的极坐标方程为,曲线的参数方程为为参数).

    1)求直线的直角坐标方程和曲线的普通方程;

    2)若过且与直线垂直的直线与曲线相交于两点,求.

    【答案】1;(2

    【解析】(1)根据极坐标与直角坐标方程的转化,参数方程与普通方程的转化即可得直线的直角坐标方程和曲线的普通方程;

    (2)根据直线与直线垂直且过,可得直线的参数方程.将直线的参数方程与曲线联立,结合韦达定理及参数方程的几何意义即可求得.

    【详解】

    (1)由直线极坐标方程为,,

    根据极坐标与直角坐标的互化公式,可得直线直角坐标方程:,

    由曲线的参数方程为为参数),,

    整理得椭圆的普通方程为.

    (2)由已知直线垂直,所以直线的倾斜角为,

    直线的参数方程为,为参数),

    把直线的参数方程代入

    化简得

    ,是上述方程的两个实根,则有

    又直线过点

    故由上式及的几何意义得

    【点睛】

    本题考查了极坐标、参数方程与直角坐标方程的转化,参数方程的几何意义,属于中档题.

    23.已知.

    1时,求不等式的解集;

    2)若的解集为是集合的子集,求的取值范围.

    【答案】1;(2

    【解析】(1)代入,可得.分类讨论即可得解不等式的解集.

    (2)根据不等式在上恒成立,去绝对值化简可得.再去绝对值即可得关于的不等式组,解不等式组即可求得的取值范围.

    【详解】

    (1),

    可得

    解不等式组可得

    综上的解集为

    (2)由题意可知,上恒成立

    上恒成立

    上恒成立

    可得

    ,

    的取值范围为

    【点睛】

    本题考查了绝对值不等式的解法,分类讨论解绝对值不等式的应用,含参数不等式的解法,属于中档题.

     

    相关试卷

    2023届陕西省宝鸡中学高三月考(七)数学(文)试题含解析: 这是一份2023届陕西省宝鸡中学高三月考(七)数学(文)试题含解析,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022届陕西省榆林市神木中学高三上学期第一次测试数学(文)试题(解析版): 这是一份2022届陕西省榆林市神木中学高三上学期第一次测试数学(文)试题(解析版),共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021陕西省洛南中学高三上学期第一次模拟数学(文)试题缺答案: 这是一份2021陕西省洛南中学高三上学期第一次模拟数学(文)试题缺答案

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map