|试卷下载
终身会员
搜索
    上传资料 赚现金
    【新人教A版】必修3高中数学第二章统计2.1.3分层抽样课时跟踪训练(含解析)
    立即下载
    加入资料篮
    【新人教A版】必修3高中数学第二章统计2.1.3分层抽样课时跟踪训练(含解析)01
    【新人教A版】必修3高中数学第二章统计2.1.3分层抽样课时跟踪训练(含解析)02
    【新人教A版】必修3高中数学第二章统计2.1.3分层抽样课时跟踪训练(含解析)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A必修32.1.3分层抽样综合训练题

    展开
    这是一份人教版新课标A必修32.1.3分层抽样综合训练题,共8页。试卷主要包含了1 随机抽样等内容,欢迎下载使用。

    2.1.3 分层抽样
    [A组 学业达标]
    1.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )
    A.100 B.150
    C.200 D.250
    解析:由题意得,eq \f(n,3 500+1 500)=eq \f(70,3500),解得n=100.
    答案:A
    2.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
    A.p1=p2C.p1=p3解析:不管是简单随机抽样、系统抽样还是分层抽样,它们都是等可能抽样,每个个体被抽中的概率均为eq \f(n,N).
    答案:D
    3.为了保证分层抽样时每个个体被等可能地抽取,必须要求( )
    A.每层等可能抽取
    B.每层抽取的个体数相等
    C.每层抽取的个体数可以不一样多,但必须满足抽取ni=n·eq \f(Ni,N)(i=1,2,…,k)个个体(其中i是层的序号,k是总层数,n为抽取的样本容量,Ni是第i层中的个体数,N是总体容量)
    D.只要抽取的样本容量一定,每层抽取的个体数没有限制
    解析:分层抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样.A中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A不正确;B中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B也不正确;
    C中,对于第i层的每个个体,它被抽到的可能性与层数i无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C正确;D显然不正确.
    答案:C
    4.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为
    ( )
    A.60 B.80
    C.120 D.180
    解析:11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,抽样比为eq \f(1,3),因为分层抽取样本的容量为300,故回收问卷总数为eq \f(300,\f(1,3))=900份,故x=900-120-180-240=360份,360×eq \f(1,3)=120份.
    答案:C
    5.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是__________.
    解析:在分层抽样中,每个个体被抽取的可能性相等,且为eq \f(样本容量,总体容量).所以每个个体被抽取的可能性是eq \f(20,120)=eq \f(1,6).
    答案:eq \f(1,6)
    6.某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
    由于不小心,表格中A,C两种产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是__________件.
    解析:抽样比130∶1 300=1∶10,即每10个产品中取1个个体,又A产品的样本容量比C产品的多10,故A产品比C产品多100件,故eq \f(1,2)(3 000-1300-100)=800(件)为C产品数量.
    答案:800
    7.下列问题中,采用怎样的抽样方法较为合理?
    (1)从10台电冰箱中抽取3台进行质量检查;
    (2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;
    (3)体育彩票000 001~100 000编号中,凡彩票号码最后三位数为345的中一等奖.
    (1)__________ (2)__________ (3)__________.
    解析:
    答案:(1)抽签法 (2)分层抽样 (3)系统抽样
    8.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
    (1)若要抽取40人调查身体状况,则应怎样抽样?
    (2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?
    解析:(1)按老年、中年、青年分层抽样,
    抽取比例为eq \f(40,2 000)=eq \f(1,50).
    故老年人,中年人,青年人各抽取4人,12人,24人,(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为eq \f(25,2 000)=eq \f(1,80),
    故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.
    9.为了考察某校的教学水平,抽查了该学校高三年级部分学生的本年度考试成绩.为了全面地反映实际情况,采取以下三种考察方式(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).
    ①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;
    ②每个班都抽取1人,共计14人,考察这14个学生的成绩;
    ③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).
    根据上面的叙述,试回答下列问题:
    (1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?
    (2)上面三种抽取方式各自采用何种抽取样本的方法?
    (3)试分别写出上面三种抽取方法各自抽取样本的步骤.
    解析:(1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.
    (2)第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.
    (3)第一种方式抽样的步骤如下:
    第一步:在这14个班中用抽签法任意抽取一个班;
    第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其考试成绩.
    第二种方式抽样的步骤如下:
    第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为 x;
    第二步:在其余的13个班中,选取学号为x+50k(1≤k≤13,k∈Z)的学生,共计14人.
    第三种方式抽样的步骤如下:
    第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;
    第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每个层抽取的个体数依次为eq \f(105,7),eq \f(420,7),eq \f(175,7),即15,60,25;
    第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.
    第四步:将所抽取的个体组合在一起构成样本.
    [B组 能力提升]
    10.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
    A.200,20 B.100,20
    C.200,10 D.100,10
    解析:该地区中小学生总人数为
    3 500+2 000+4 500=10 000人,
    则样本容量为10 000×2%=200人,其中抽取的高中生近视人数为
    2 000×2%×50%=20.
    答案:A
    11.某初级中学共有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为001,002,003,…,270;使用系统抽样时,将学生统一随机编号为001,002,003,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:
    ①007,034,061,088,115,142,169,196,223,250;
    ②005,009,100,107,111,121,180,195,200,265;
    ③011,038,065,092,119,146,173,200,227,254;
    ④036,062,088,114,140,166,192,218,244,270.
    关于上述样本的下列结论中,正确的是( )
    A.②③都不能为系统抽样
    B.②④都不能为分层抽样
    C.①④都可能为系统抽样
    D.①③都可能为分层抽样
    解析:系统抽样又称为“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在001~027范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k=eq \f(270,10)=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A,C;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在001~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.
    答案:D
    12.山东某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:
    其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的eq \f(3,5),为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取__________人.
    解析:因为“泥塑”社团的人数占总人数的eq \f(3,5),故“剪纸”社团的人数占总人数的eq \f(2,5),所以“剪纸”社团的人数为800×eq \f(2,5)=320.因为“剪纸”社团中高二年级人数比例为eq \f(y,x+y+z)=eq \f(3,2+3+5)=eq \f(3,10),所以“剪纸”社团中高二年级人数为320×eq \f(3,10)=96.由题意知,抽样比为eq \f(50,800)=eq \f(1,16),所以从高二年级“剪纸”社团中抽取的人数为96×eq \f(1,16)=6.
    答案:6
    13.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的eq \f(1,4),且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:
    (1)游泳组中,青年人、中年人、老年人分别所占的比例;
    (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
    解析:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,
    则有eq \f(x·40%+3xb,4x)=47.5%,eq \f(x·10%+3xc,4x)=10%.
    解得b=50%,c=10%.
    故a=1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占的比例为40%,50%,10%.
    (2)游泳组中,抽取的青年人人数为200×eq \f(3,4)×40%=60;
    抽取的中年人人数为200×eq \f(3,4)×50%=75;
    抽取的老年人人数为200×eq \f(3,4)×10%=15.
    14.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.
    (1)应如何抽取才能得到比较客观的评价结论?
    (2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?
    (3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?
    解析:(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.
    因为样本容量为120,总体个数为500+3 000+4 000=7 500,则抽样比:eq \f(120,7 500)=eq \f(2,125),
    所以有500×eq \f(2,125)=8,3 000×eq \f(2,125)=48,
    4 000×eq \f(2,125)=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.
    分层抽样的步骤是
    ①分层:分为教职员工、初中生、高中生,共三层.
    ②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.
    ③各层分别按简单随机抽样或系统抽样的方法抽取样本.
    ④综合每层抽样,组成样本.
    这样便完成了整个抽样过程,就能得到比较客观的评价结论.
    (2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是
    ①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.
    ②在随机数表上随机选取一个起始位置.
    ③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于
    3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.
    (3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.产品类型
    A
    B
    C
    产品数量(件)
    1 300
    样本容量
    130
    题号
    判断
    原因分析
    (1)
    抽签法
    总体容量较小,宜用抽签法
    (2)
    分层抽样
    由于学校各类人员对这一问题的看法可能差异较大,用分层抽样
    (3)
    系统抽样
    总体容量大,样本容量较大,等距抽取,用系统抽样
    人数
    管理
    技术开发
    营销
    生产
    合计
    老年
    40
    40
    40
    80
    200
    中年
    80
    120
    160
    240
    600
    青年
    40
    160
    280
    720
    1 200
    合计
    160
    320
    480
    1 040
    2 000
    高一年级
    高二年级
    高三年级
    泥塑
    a
    b
    c
    剪纸
    x
    y
    z
    相关试卷

    高中数学人教版新课标A必修32.1.3分层抽样课堂检测: 这是一份高中数学人教版新课标A必修32.1.3分层抽样课堂检测,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    数学必修32.1.3分层抽样同步达标检测题: 这是一份数学必修32.1.3分层抽样同步达标检测题,共10页。试卷主要包含了5%=91等内容,欢迎下载使用。

    高中数学人教版新课标A必修3第二章 统计综合与测试课堂检测: 这是一份高中数学人教版新课标A必修3第二章 统计综合与测试课堂检测,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【新人教A版】必修3高中数学第二章统计2.1.3分层抽样课时跟踪训练(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map