年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2014年高考数学(理)真题分类汇编:立体几何

    2014年高考数学(理)真题分类汇编:立体几何第1页
    2014年高考数学(理)真题分类汇编:立体几何第2页
    2014年高考数学(理)真题分类汇编:立体几何第3页
    还剩64页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2014年高考数学(理)真题分类汇编:立体几何

    展开

    这是一份2014年高考数学(理)真题分类汇编:立体几何,共67页。
     数 学
    G单元 立体几何
    G1 空间几何体的结构
    8.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为(  )
    A. B. C. D.
    8.B 

    G2 空间几何体的三视图和直观图
    7.[2014·安徽卷] 一个多面体的三视图如图1­2所示,则该多面体的表面积为(  )
    A.21+ B.8+ C.21 D.18



    图1­2
    7.A 




    2.[2014·福建卷] 某空间几何体的正视图是三角形,则该几何体不可能是(  )
    A.圆柱 B.圆锥 C.四面体 D.三棱柱
    2.A 
    5.[2014·湖北卷] 在如图1­1所示的空间直角坐标系O ­ xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为(  )

    图1­1
     
    A.①和② B.①和③ C.③和② D.④和②
    5.D 
    7.、[2014·湖南卷] 一块石材表示的几何体的三视图如图1­2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于(  )

    图1­2
    A.1 B.2 C.3 D.4
    7.B
    5.[2014·江西卷] 一几何体的直观图如图1­1所示,下列给出的四个俯视图中正确的是(  )

    图1­1
       
     A    B    C     D
    图1­2
    5.B
    7.、[2014·辽宁卷] 某几何体三视图如图1­1所示,则该几何体的体积为(  )
    A.8-2π B.8-π C.8- D.8-

    图1­1
    7.B 
    3.[2014·浙江卷] 几何体的三视图(单位:cm)如图1­1所示,则此几何体的表面积是(  )

    图1­1
    A.90 cm2 B.129 cm2 C.132 cm2 D.138 cm2
    3.D


    12.[2014·新课标全国卷Ⅰ] 如图1­3,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )

    图1­3
    A.6 B.6 C.4 D.4
    12.B 

    6.[2014·新课标全国卷Ⅱ] 如图1­1,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为(  )

    图1­1

    A. B. C. D.
    6.C
    17.[2014·陕西卷] 四面体ABCD及其三视图如图1­4所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.
    (1)证明:四边形EFGH是矩形;
    (2)求直线AB与平面EFGH夹角θ的正弦值.
      
    图1­4
    17.解:(1)证明:由该四面体的三视图可知,
    BD⊥DC,BD⊥AD,AD⊥DC,
    BD=DC=2,AD=1.
    由题设,BC∥平面EFGH,
    平面EFGH∩平面BDC=FG,
    平面EFGH∩平面ABC=EH,
    ∴BC∥FG,BC∥EH,∴FG∥EH.
    同理EF∥AD,HG∥AD,∴EF∥HG.
    ∴四边形EFGH是平行四边形.
    又∵AD⊥DC,AD⊥BD,∴AD⊥平面BDC,
    ∴AD⊥BC,∴EF⊥FG,
    ∴四边形EFGH是矩形.

    (2)方法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),
    DA=(0,0,1),BC=(-2,2,0),
    BA=(-2,0,1).
    设平面EFGH的法向量n=(x,y,z),
    ∵EF∥AD,FG∥BC,
    ∴n·DA=0,n·BC=0,
    得取n=(1,1,0),
    ∴sin θ=|cos〈,n〉|===.
    方法二:如图,以D为坐标原点建立空间直角坐标系,
    则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),
    ∵E是AB的中点,∴F,G分别为BD,DC的中点,得E,F(1,0,0),G(0,1,0).
    ∴=,FG=(-1,1,0),
    BA=(-2,0,1).
    设平面EFGH的法向量n=(x,y,z),
    则n·FE=0,n·FG=0,
    得取n=(1,1,0),
    ∴sin θ=|cos〈,n〉|===.
    10.[2014·天津卷] 一个儿何体的三视图如图1­3所示(单位:m),则该几何体的体积为________m3.


    图1­3
    10. 
    7.[2014·重庆卷] 某几何体的三视图如图1­2所示,则该几何体的表面积为(  )

    图1­2
    A.54 B.60 C.66 D.72
    7.B 

    G3 平面的基本性质、空间两条直线
    4.[2014·辽宁卷] 已知m,n表示两条不同直线,α表示平面.下列说法正确的是(  )
    A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥n
    C.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α
    4.B

    17.、、[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1­5所示.
    (1)求证:AB⊥CD;
    (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

    图1­5
    17.解:(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD.
    又CD⊂平面BCD,∴AB⊥CD.
    (2)过点B在平面BCD内作BE⊥BD.

    由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD.
    以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系(如图所示).
    依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M.
    则=(1,1,0),=,=(0,1,-1).
    设平面MBC的法向量n=(x0,y0,z0),
    则即
    取z0=1,得平面MBC的一个法向量n=(1,-1,1).
    设直线AD与平面MBC所成角为θ,
    则sin θ===.
    即直线AD与平面MBC所成角的正弦值为.
    11.[2014·新课标全国卷Ⅱ] 直三棱柱ABC­A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )
    A. B. C. D.
    11.C [解析] 如图,E为BC的中点.由于M,N分别是A1B1,A1C1的中点,故MN∥B1C1且MN=B1C1,故MN綊BE,所以四边形MNEB为平行四边形,所以EN綊BM,所以直线AN,NE所成的角即为直线BM,AN所成的角.设BC=1,则B1M=B1A1=,所以MB===NE,AN=AE=,
    在△ANE中,根据余弦定理得cos ∠ANE==.

    18.[2014·四川卷] 三棱锥A ­ BCD及其侧视图、俯视图如图1­4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.
    (1)证明:P是线段BC的中点;
    (2)求二面角A ­ NP ­ M的余弦值.
     
    图1­4
    18.解:(1)如图所示,取BD的中点O,连接AO,CO.
    由侧视图及俯视图知,△ABD,△BCD为正三角形,

    所以AO⊥BD,OC⊥BD.
    因为AO,OC⊂平面AOC,且AO∩OC=O,
    所以BD⊥平面AOC.
    又因为AC⊂平面AOC,所以BD⊥AC.
    取BO的中点H,连接NH,PH.
    又M,N,H分别为线段AD,AB,BO的中点,所以MN∥BD,NH∥AO,
    因为AO⊥BD,所以NH⊥BD.
    因为MN⊥NP,所以NP⊥BD.
    因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.
    又因为HP⊂平面NHP,所以BD⊥HP.
    又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.
    因为H为BO的中点,所以P为BC的中点.
    (2)方法一:如图所示,作NQ⊥AC于Q,连接MQ.

    由(1)知,NP∥AC,所以NQ⊥NP.
    因为MN⊥NP,所以∠MNQ为二面角A ­ NP ­ M的一个平面角.
    由(1)知,△ABD,△BCD为边长为2的正三角形,所以AO=OC=.
    由俯视图可知,AO⊥平面BCD.
    因为OC⊂平面BCD,所以AO⊥OC,因此在等腰直角△AOC中,AC=.
    作BR⊥AC于R
    因为在△ABC中,AB=BC,所以R为AC的中点,
    所以BR==.
    因为在平面ABC内,NQ⊥AC,BR⊥AC,
    所以NQ∥BR.
    又因为N为AB的中点,所以Q为AR的中点,
    所以NQ==.
    同理,可得MQ=.
    故△MNQ为等腰三角形,
    所以在等腰△MNQ中,
    cos∠MNQ===.
    故二面角A ­ NP ­ M的余弦值是.
    方法二:由俯视图及(1)可知,AO⊥平面BCD.
    因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.
    又OC⊥OB,所以直线OA,OB,OC两两垂直.
    如图所示,以O为坐标原点,以OB,OC,OA的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系O ­xyz.
    则A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0).
    因为M,N分别为线段AD,AB的中点,
    又由(1)知,P为线段BC的中点,

    所以M,N,P,于是AB=(1,0,-),BC=(-1,,0),MN=(1,0,0),NP=.
    设平面ABC的一个法向量n1=(x1,y1,z1),
    由得即

    从而
    取z1=1,则x1=,y1=1,所以n1=(,1,1).
    设平面MNP的一个法向量n2=(x2,y2,z2),由,


    从而
    取z2=1,则y2=1,x2=0,所以n2=(0,1,1).
    设二面角A ­ NP ­ M的大小为θ,则cos θ===.
    故二面角A­NP­M的余弦值是.

    G4 空间中的平行关系
    20.[2014·安徽卷] 如图1­5,四棱柱ABCD ­ A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.

    图1­5
    (1)证明:Q为BB1的中点;
    (2)求此四棱柱被平面α所分成上下两部分的体积之比;
    (3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.
    20.解: (1)证明:因为BQ∥AA1,BC∥AD,
    BC∩BQ=B,AD∩AA1=A,
    所以平面QBC∥平面A1AD,
    从而平面A1CD与这两个平面的交线相互平行,
    即QC∥A1D.
    故△QBC与△A1AD的对应边相互平行,
    于是△QBC∽△A1AD,
    所以===,即Q为BB1的中点.
    (2)如图1所示,连接QA,QD.设AA1=h,梯形ABCD 的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V下,BC=a,则AD=2a.

    图1
    V三棱锥Q ­A1AD=×·2a·h·d=ahd,
    V四棱锥Q ­ABCD=··d·=ahd,
    所以V下=V三棱锥Q ­A1AD+V四棱锥Q ­ABCD=ahd.
    又V四棱柱A1B1C1D1 ­ABCD=ahd,
    所以V上=V四棱柱A1B1C1D1 ­ABCD-V下=ahd-ahd=ahd,故=.
    (3)方法一:如图1所示,在△ADC中,作AE⊥DC,垂足为E,连接A1E.
    又DE⊥AA1,且AA1∩AE=A,
    所以DE⊥平面AEA1,所以DE⊥A1E.
    所以∠AEA1为平面α与底面ABCD所成二面角的平面角.
    因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA.
    又因为梯形ABCD的面积为6,DC=2,
    所以S△ADC=4,AE=4.
    于是tan∠AEA1==1,∠AEA1=.
    故平面α与底面ABCD所成二面角的大小为.
    方法二:如图2所示,以D为原点,DA,分别为x轴和z轴正方向建立空间直角坐标系.
    设∠CDA=θ,BC=a,则AD=2a.
    因为S四边形ABCD=·2sin θ=6,
    所以a=.

    图2
    从而可得C(2cos θ,2sin θ,0),A1,
    所以DC=(2cos θ,2sin θ,0),=.
    设平面A1DC的法向量n=(x,y,1),


    所以n=(-sin θ,cos θ,1).
    又因为平面ABCD的法向量m=(0,0,1),
    所以cos〈n,m〉==,
    故平面α与底面ABCD所成二面角的大小为.
    17.[2014·北京卷] 如图1­3,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P ­ ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
    (1)求证:AB∥FG;
    (2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.

    图1­3
    17.解:(1)证明:在正方形AMDE中,因为B是AM的中点,所以AB∥DE.
    又因为AB⊄平面PDE,
    所以AB∥平面PDE.
    因为AB⊂平面ABF,且平面ABF∩平面PDE=FG,
    所以AB∥FG.
    (2)因为PA⊥底面ABCDE,
    所以PA⊥AB,PA⊥AE.
    建立空间直角坐标系Axyz,如图所示,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),=(1,1,0).

    设平面ABF的法向量为n=(x,y,z),则

    令z=1,则y=-1.所以n=(0,-1,1).
    设直线BC与平面ABF所成角为α,则
    sin α=|cos〈n,〉|==.
    因此直线BC与平面ABF所成角的大小为.
    设点H的坐标为(u,v,w).
    因为点H在棱PC上,所以可设=λ(0

    相关试卷

    专题06 立体几何(解答题)(理)(学生版)2021-2023年高考数学真题分类汇编(全国通用):

    这是一份专题06 立体几何(解答题)(理)(学生版)2021-2023年高考数学真题分类汇编(全国通用),共10页。试卷主要包含了在四棱锥中,底面,,,,,如图,四面体中,,,,为的中点,如图,在长方体中,已知,,如图,四面体中,,,平面等内容,欢迎下载使用。

    2021_2023年高考数学真题分类汇编专题06立体几何解答题理:

    这是一份2021_2023年高考数学真题分类汇编专题06立体几何解答题理,共31页。试卷主要包含了在四棱锥中,底面,,,,,如图,四面体中,,,,为的中点,如图,在长方体中,已知,,如图,四面体中,,,平面等内容,欢迎下载使用。

    2021_2023年高考数学真题分类汇编专题05立体几何选择题理:

    这是一份2021_2023年高考数学真题分类汇编专题05立体几何选择题理,共28页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map