2021年高考数学二轮复习课时跟踪检测07《数列》大题练(含答案详解)
展开在公差不为零的等差数列{an}中,a1=1,a2,a4,a8成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2an,Tn=b1+b2+…+bn,求Tn.
已知等差数列{an}的前n项和为Sn,且a3+a6=4,S5=-5.
(1)求数列{an}的通项公式;
(2)若Tn=|a1|+|a2|+|a3|+…+|an|,求T5的值和Tn的表达式.
已知数列{an}满足a1=1,且an+1=2an,设bn-2=3lg2an(n∈N*).
(1)求数列{bn}的通项公式;
(2)求数列{|an-bn|}的前n项和Sn.
已知各项均不为零的数列{an}的前n项和为Sn,且对任意的n∈N*,满足Sn=eq \f(1,3)a1(an-1).
(1)求数列{an}的通项公式;
(2)设数列{bn}满足anbn=lg2an,数列{bn}的前n项和为Tn,求证:Tn
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项公式bn=eq \b\lc\{\rc\ (\a\vs4\al\c1(a\f(n+1,2),n=2k-1,,2\f(n,2)-1,n=2k))(k∈N*),
求数列{bn}的前n项和Sn.
已知数列{an}的前n项和Sn=2an-2.
(1)求数列{an}的通项公式;
(2)令bn=an·lg2an,求数列{bn}的前n项和Tn.
已知在数列{an}中,a1=1,anan+1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n.
(1)求证:数列{a2n}与{a2n-1}都是等比数列;
(2)若数列{an}的前2n项的和为T2n,令bn=(3-T2n)·n·(n+1),求数列{bn}的最大项.
已知数列{an}满足a1=1,an+1=eq \f(3an,2an+3),n∈N*.
(1)求证:数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))为等差数列;
(2)设T2n=eq \f(1,a1a2)-eq \f(1,a2a3)+eq \f(1,a3a4)-eq \f(1,a4a5)+…+eq \f(1,a2n-1a2n)-eq \f(1,a2na2n+1),求T2n.
\s 0 参考答案
解:(1)设等差数列{an}的公差为d,
则依题意有eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=1,,a1+3d2=a1+da1+7d,))
解得d=1或d=0(舍去),
∴an=1+(n-1)=n.
(2)由(1)得an=n,∴bn=2n,
∴{bn}是首项为2,公比为2的等比数列,
∴Tn=eq \f(21-2n,1-2)=2n+1-2.
解:(1)由题知eq \b\lc\{\rc\ (\a\vs4\al\c1(2a1+7d=4,,5a1+\f(5×4,2)d=-5,))
解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=-5,,d=2,))故an=2n-7(n∈N*).
(2)由an=2n-7<0,得n
当n≥4时,an=2n-7>0.
易知Sn=n2-6n,S3=-9,
所以T5=-(a1+a2+a3)+a4+a5=-S3+(S5-S3)=S5-2S3=13.
当n≤3时,Tn=-Sn=6n-n2;
当n≥4时,Tn=-S3+(Sn-S3)=Sn-2S3=n2-6n+18.
故Tn=eq \b\lc\{\rc\ (\a\vs4\al\c1(6n-n2,n≤3,,n2-6n+18,n≥4.))
解:(1)因为an+1=2an,a1=1,
所以数列{an}是以1为首项,2为公比的等比数列.
所以an=2n-1.
又因为bn-2=3lg2an(n∈N*),
所以bn=3lg22n-1+2=3(n-1)+2=3n-1.
(2)因为数列{an}中的项为1,2,4,8,16,…,2n-1,
数列{bn}中的项为2,5,8,11,14,…,3n-1,
所以①当n≤4时,|an-bn|=bn-an=3n-1-2n-1,
所以Sn=eq \f(n3n-1+2,2)-eq \f(1×1-2n,1-2)=eq \f(3n2+n+2,2)-2n.
②当n>4时,|an-bn|=an-bn=2n-1-(3n-1),
所以Sn=S4+(a5+a6+…+an)-(b5+b6+…+bn)=2n-eq \f(3n2+n-42,2),
综合①②得Sn=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(3n2+n+2,2)-2n,n≤4,,2n-\f(3n2+n-42,2),n>4.))
解:(1)当n=1时,a1=S1=eq \f(1,3)a1(a1-1)=eq \f(1,3)aeq \\al(2,1)-eq \f(1,3)a1,
∵a1≠0,∴a1=4.
∴Sn=eq \f(4,3)(an-1),
∴当n≥2时,Sn-1=eq \f(4,3)(an-1-1),
两式相减得an=4an-1(n≥2),
∴数列{an}是首项为4,公比为4的等比数列,
∴an=4n.
(2)证明:∵anbn=lg2an=2n,∴bn=eq \f(2n,4n),
∴Tn=eq \f(2,41)+eq \f(4,42)+eq \f(6,43)+…+eq \f(2n,4n),
eq \f(1,4)Tn=eq \f(2,42)+eq \f(4,43)+eq \f(6,44)+…+eq \f(2n,4n+1),
两式相减得eq \f(3,4)Tn=eq \f(2,4)+eq \f(2,42)+eq \f(2,43)+eq \f(2,44)+…+eq \f(2,4n)-eq \f(2n,4n+1)
=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)+\f(1,42)+\f(1,43)+\f(1,44)+…+\f(1,4n)))-eq \f(2n,4n+1)
=2×eq \f(\f(1,4)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n))),1-\f(1,4))-eq \f(2n,4n+1)=eq \f(2,3)-eq \f(2,3×4n)-eq \f(2n,4n+1)=eq \f(2,3)-eq \f(6n+8,3×4n+1).
∴Tn=eq \f(8,9)-eq \f(6n+8,9×4n)
由题意得,(a3-2d)(a3+2d)=(a3-d)2,
即d2-2d=0,解得d=2或d=0(舍去),
所以数列{an}的通项公式为an=a3+(n-3)d=2n-1.
(2)当n=2k,k∈N*时,Sn=b1+b2+…+bn
=b1+b3+…+b2k-1+b2+b4+…+b2k
=a1+a2+…+ak+(20+21+…+2k-1)
=eq \f(k1+2k-1,2)+eq \f(1-2k,1-2)=k2+2k-1=eq \f(n2,4)+2eq \f(n,2)-1;
当n=2k-1,k∈N*时,n+1=2k,
则Sn=Sn+1-bn+1=eq \f(n+12,4)+2eq \f(n+1,2)-1-2eq \f(n+1,2)-1
=eq \f(n2+2n-3,4)+2eq \f(n-1,2).
综上,Sn=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(n2,4)+2\f(n,2)-1,n=2k,,\f(n2+2n-3,4)+2\f(n-1,2),n=2k-1,))(k∈N*).
解:(1)当n=1时,a1=2a1-2,所以a1=2.
当n≥2时,Sn-1=2an-1-2,
Sn-Sn-1=(2an-2)-(2an-1-2),即an=2an-1.
所以数列{an}是以2为首项,2为公比的等比数列,
所以an=2n.
(2)由(1)得bn=2nlg22n=n·2n,
所以Tn=1×21+2×22+3×23+…+(n-1)×2n-1+n×2n,
2Tn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,
两式相减,得-Tn=21+22+23+…+2n-n×2n+1
=eq \f(21-2n,1-2)-n×2n+1
=(1-n)2n+1-2,
所以Tn=(n-1)2n+1+2.
解:(1)证明:由题意可得a1a2=eq \f(1,2),则a2=eq \f(1,2).
又anan+1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,an+1an+2=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1,∴eq \f(an+2,an)=eq \f(1,2).
∴数列{a2n-1}是以1为首项,eq \f(1,2)为公比的等比数列;
数列{a2n}是以eq \f(1,2)为首项,eq \f(1,2)为公比的等比数列.
(2)T2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)
=eq \f(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,1-\f(1,2))+eq \f(\f(1,2)\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n)),1-\f(1,2))=3-3·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n.
∴bn=3n(n+1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,bn+1=3(n+1)(n+2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1,
∴eq \f(bn+1,bn)=eq \f(n+2,2n),∴b1
∴数列{bn}的最大项为b2=b3=eq \f(9,2).
解:(1)证明:由an+1=eq \f(3an,2an+3),得eq \f(1,an+1)=eq \f(2an+3,3an)=eq \f(1,an)+eq \f(2,3),
所以eq \f(1,an+1)-eq \f(1,an)=eq \f(2,3).又a1=1,则eq \f(1,a1)=1,
所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是首项为1,公差为eq \f(2,3)的等差数列.
(2)设bn=eq \f(1,a2n-1a2n)-eq \f(1,a2na2n+1)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a2n-1)-\f(1,a2n+1)))eq \f(1,a2n),
由(1)得,数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是公差为eq \f(2,3)的等差数列,
所以eq \f(1,a2n-1)-eq \f(1,a2n+1)=-eq \f(4,3),即bn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a2n-1)-\f(1,a2n+1)))eq \f(1,a2n)=-eq \f(4,3)×eq \f(1,a2n),
所以bn+1-bn=-eq \f(4,3)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a2n+2)-\f(1,a2n)))=-eq \f(4,3)×eq \f(4,3)=-eq \f(16,9).
又b1=-eq \f(4,3)×eq \f(1,a2)=-eq \f(4,3)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a1)+\f(2,3)))=-eq \f(20,9),
所以数列{bn}是首项为-eq \f(20,9),公差为-eq \f(16,9)的等差数列,
所以T2n=b1+b2+…+bn=-eq \f(20,9)n+eq \f(nn-1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(16,9)))=-eq \f(4,9)(2n2+3n).
高考数学二轮复习课时跟踪检测 06数列大题练(含答案解析): 这是一份高考数学二轮复习课时跟踪检测 06数列大题练(含答案解析),共9页。
高考数学二轮复习课时跟踪检测07数列大题练(含答案): 这是一份高考数学二轮复习课时跟踪检测07数列大题练(含答案),共6页。
高考数学(理数)二轮复习课时跟踪检测07《数列》大题练(教师版): 这是一份高考数学(理数)二轮复习课时跟踪检测07《数列》大题练(教师版),共6页。