|试卷下载
搜索
    上传资料 赚现金
    2021年广西北海市中考数学一模试卷
    立即下载
    加入资料篮
    2021年广西北海市中考数学一模试卷01
    2021年广西北海市中考数学一模试卷02
    2021年广西北海市中考数学一模试卷03
    还剩21页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年广西北海市中考数学一模试卷

    展开
    这是一份2021年广西北海市中考数学一模试卷,共24页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    1.(3分)﹣2021的相反数是( )
    A.﹣2021B.﹣C.D.2021
    2.(3分)下列图形是中心对称图形的是( )
    A.B.C.D.
    3.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5400000万元,将数据5400000用科学记数法表示为( )
    A.0.54×107B.54×105C.5.4×106D.5.4×108
    4.(3分)下列运算正确的是( )
    A.x5÷x3=x2B.(a+b)2=a2+b2
    C.(﹣2a2)3=6a6D.(b+a)(a﹣b)=b2﹣a2
    5.(3分)如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=85°,那么∠2的度数为( )
    A.25°B.35°C.45°D.55°
    6.(3分)下列说法正确的是( )
    A.打开电视,正在播放新闻联播是必然事件
    B.了解中央电视台《开学第一课》的收视率适合采用全面调查
    C.北海气象局预报说“明天的降水概率为95%”,意味着北海明天一定下雨
    D.若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差S甲2=1.25,S乙2=0.96,则说明乙组数数据比甲组数据稳定
    7.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为( )
    A.B.C.D.
    8.(3分)如图,在△ABC中,按以下步骤作图:
    ①分别以点B和C为圆心,适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点M和N;
    ②作直线MN交AB于点D,连接CD.
    若AB=9,AC=4,则△ACD的周长是( )
    A.12B.13C.17D.18
    9.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )
    A.B.C.D.
    10.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为( )
    A.B.
    C.D.
    11.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为( )
    A.24﹣3+3πB.24﹣3﹣3πC.24﹣9﹣3πD.24﹣9+3π
    12.(3分)如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为( )
    A.B.8C.10D.
    二、填空题(本大题共6小题,每小题3分,共18分)
    13.(3分)因式分解:3x2﹣12= .
    14.(3分)若代数式在实数范围内有意义,则x的取值范围是 .
    15.(3分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为 .
    16.(3分)一组数据共50个,分为6组,第1﹣4组的频数分别是5,7,8,10,第5组的频率是0.20,那么第6组的频数是 .
    17.(3分)古希腊数学家把数1,3,6,10,15,21…叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…,由此推算a2020+a2021= .
    18.(3分)如图,在Rt△ABC中,∠BAC=90°,∠ACB=45°,AB=2,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为 .
    三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)
    19.(6分)计算:()﹣1﹣2cs30°+|﹣|﹣(4﹣π)0.
    20.(6分)先化简,再求值:﹣,其中a=﹣5.
    21.(8分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).
    (1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;
    (2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.
    22.(8分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
    (1)求证:△AEF≌△DEB;
    (2)若∠BAC=90°,求证:四边形ADCF是菱形.
    23.(8分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
    七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
    八年级20名学生的测试成绩条形统计图如图:
    七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
    根据以上信息,解答下列问题:
    (1)直接写出上述表中的a,b,c的值;
    (2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);
    (3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?
    24.(10分)在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.
    (1)求甲、乙两条生产线每天的产能各是多少?
    (2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?
    (3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?
    25.(10分)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.
    (1)经过多长时间,盛水筒P首次到达最高点?
    (2)浮出水面3.4秒后,盛水筒P距离水面多高?
    (3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.
    (参考数据:cs43°=sin47°≈,sin16°=cs74°≈,sin22°=cs68°≈)
    26.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
    (1)求抛物线的表达式;
    (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
    (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
    2021年广西北海市中考数学一模试卷
    参考答案与试题解析
    一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中只有一项是符合要求的)用2B铅笔把答题卡上对应题目的答案标号涂黑
    1.(3分)﹣2021的相反数是( )
    A.﹣2021B.﹣C.D.2021
    【分析】利用相反数的定义分析得出答案.
    【解答】解:﹣2021的相反数是:2021.
    故选:D.
    2.(3分)下列图形是中心对称图形的是( )
    A.B.C.D.
    【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.
    【解答】解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选:D.
    3.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5400000万元,将数据5400000用科学记数法表示为( )
    A.0.54×107B.54×105C.5.4×106D.5.4×108
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:将数据5400000用科学记数法表示为5.4×106,
    故选:C.
    4.(3分)下列运算正确的是( )
    A.x5÷x3=x2B.(a+b)2=a2+b2
    C.(﹣2a2)3=6a6D.(b+a)(a﹣b)=b2﹣a2
    【分析】根据同底数幂除法运算法则进行计算即可得出A选项答案;
    根据完全平方公式进行计算即可得出B选项答案;
    根据积的乘方运算法则进行计算即可得出C选项答案;
    根据平方差公式进行计算即可得出D选项答案.
    【解答】解:A:因为x5÷x3=x2,所以A选项正确;
    B:因为(a+b)2=a2+2ab+b2,所以B选项错误;
    C:因为(﹣2a2)3=﹣8a6,所以C选项错误;
    D:因为(b+a)(a﹣b)=a2﹣b2,所以CD项错误;
    故选:A.
    5.(3分)如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=85°,那么∠2的度数为( )
    A.25°B.35°C.45°D.55°
    【分析】先根据两直线平行的性质,得到∠3=∠2,再根据平角的定义,即可得出∠2的度数.
    【解答】解:∵AB∥CD,
    ∴∠3=∠2,
    ∵∠1=85°,
    ∴85°+60°+∠3=180°,
    ∴∠3=35°,
    ∴∠2=35°,
    故选:B.
    6.(3分)下列说法正确的是( )
    A.打开电视,正在播放新闻联播是必然事件
    B.了解中央电视台《开学第一课》的收视率适合采用全面调查
    C.北海气象局预报说“明天的降水概率为95%”,意味着北海明天一定下雨
    D.若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差S甲2=1.25,S乙2=0.96,则说明乙组数数据比甲组数据稳定
    【分析】直接利用随机事件的定义以及抽样调查、概率的意义、方差的意义分别分析得出答案.
    【解答】解:A、打开电视,正在播放新闻联播是随机事件,故此选项错误;
    B、了解中央电视台《开学第一课》的收视率适合采用抽样调查,故此选项错误;
    C、北海气象局预报说“明天的降水概率为95%”,意味着北海明天下雨的可能性比较大,故此选项错误;
    D、若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差S甲2=1.25,S乙2=0.96,则说明乙组数数据比甲组数据稳定,故此选项正确.
    故选:D.
    7.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为( )
    A.B.C.D.
    【分析】首先根据平行线分线段成比例定理得出比例式,即可得出结果.
    【解答】解:∵DE∥BC,
    ∴==.
    故选:B.
    8.(3分)如图,在△ABC中,按以下步骤作图:
    ①分别以点B和C为圆心,适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点M和N;
    ②作直线MN交AB于点D,连接CD.
    若AB=9,AC=4,则△ACD的周长是( )
    A.12B.13C.17D.18
    【分析】利用线段的垂直平分线的性质求出,CD+AD=AB=9,即可解决问题.
    【解答】解:由作图可知,MN垂直平分线段BC,
    ∴DC=DB,
    ∴AD+DC=AD+DB=AB=9,
    ∴△ADC的周长=AC+AD+DC=9+4=13,
    故选:B.
    9.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )
    A.B.C.D.
    【分析】根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.
    【解答】解:根据题意画图如下:
    共有12种等可能数,其中恰好选中甲、乙两位选手的有2种,
    则恰好选中甲、乙两位选手的概率是=;
    故选:C.
    10.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为( )
    A.B.
    C.D.
    【分析】根据“若每人出5钱,还差45钱;若每人出7钱,多余3钱”,即可得出关于x,y的二元一次方程组,此题得解.
    【解答】解:依题意,得:.
    故选:C.
    11.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为( )
    A.24﹣3+3πB.24﹣3﹣3πC.24﹣9﹣3πD.24﹣9+3π
    【分析】连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=,进而可求图中阴影部分的面积.
    【解答】解:如图,连接OM、ON,
    ∵半圆分别与AB,AC相切于点M,N.
    ∴OM⊥AB,ON⊥AC,
    ∵∠BAC=120°,
    ∴∠MON=60°,
    ∴∠MOB+∠NOC=120°,
    ∵的长为π,
    ∴=π,
    ∴r=3,
    ∴OM=ON=r=3,
    连接OA,
    在Rt△AON中,∠AON=30°,ON=3,
    ∴AN=,
    ∴AM=AN=,
    ∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,
    ∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)
    =3×(BM+CN)﹣
    =(16﹣2)﹣3π
    =24﹣3﹣3π.
    故选:B.
    12.(3分)如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为( )
    A.B.8C.10D.
    【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.
    【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,
    ∴∠BHC=90°,
    ∵点D(﹣2,3),AD=5,
    ∴DE=3,
    ∴AE==4,
    ∵四边形ABCD是矩形,
    ∴AD=BC,
    ∴∠BCD=∠ADC=90°,
    ∴∠DCP+∠BCH=∠BCH+∠CBH=90°,
    ∴∠CBH=∠DCH,
    ∵∠DCP+∠CPD=∠APO+∠DAE=90°,
    ∠CPD=∠APO,
    ∴∠DCP=∠DAE,
    ∴∠CBH=∠DAE,
    ∵∠AED=∠BHC=90°,
    ∴△ADE≌△BCH(AAS),
    ∴BH=AE=4,
    ∵OE=2,
    ∴OA=2,
    ∴AF=2,
    ∵∠APO+∠PAO=∠BAF+∠PAO=90°,
    ∴∠APO=∠BAF,
    ∴△APO∽△BAF,
    ∴,
    ∴=,
    ∴BF=,
    ∴B(4,),
    ∴k=,
    故选:D.
    二、填空题(本大题共6小题,每小题3分,共18分)
    13.(3分)因式分解:3x2﹣12= 3(x+2)(x﹣2) .
    【分析】原式提取公因式,再利用平方差公式分解即可.
    【解答】解:原式=3(x2﹣4)
    =3(x+2)(x﹣2).
    故答案为:3(x+2)(x﹣2).
    14.(3分)若代数式在实数范围内有意义,则x的取值范围是 x≤ .
    【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.
    【解答】解:根据题意得:3﹣2x≥0,解得:x≤.
    故答案为:x≤.
    15.(3分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为 40 .
    【分析】由三角形中位线定理可求AB=10,由菱形的性质即可求解.
    【解答】解:∵E,F分别是AD,BD的中点,
    ∴EF是△ABD的中位线,
    ∴EF=AB=5,
    ∴AB=10,
    ∵四边形ABD是菱形,
    ∴AB=BC=CD=AD=10,
    ∴菱形ABCD的周长=4AB=40;
    故答案为:40.
    16.(3分)一组数据共50个,分为6组,第1﹣4组的频数分别是5,7,8,10,第5组的频率是0.20,那么第6组的频数是 10 .
    【分析】首先根据第5组的频率是0.20计算出它的频数,再用总数减去前5个小组的频数即可得第6组的频数.
    【解答】解:第5组的频数:50×0.2=10,
    第6组的频数是:50﹣5﹣7﹣8﹣10﹣10=10,
    故答案为:10.
    17.(3分)古希腊数学家把数1,3,6,10,15,21…叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…,由此推算a2020+a2021= 20212 .
    【分析】分别计算a1+a2,a2+a3,a3+a4的值,找到规律,即可得出答案.
    【解答】解:∵a1+a2=1+3=4=22;
    a2+a3=3+6=9=32;
    a3+a4=6+10=16=42;
    ∴an+an+1=(n+1)2;
    ∴a2020+a2021=20212.
    故答案为:20212.
    18.(3分)如图,在Rt△ABC中,∠BAC=90°,∠ACB=45°,AB=2,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为 2 .
    【分析】设PQ与AC交于点O,作OP′⊥BC于P′.首先求出OP′,当P与P′重合时,PQ的值最小,PQ的最小值=2OP′,从而求解.
    【解答】解:设PQ与AC交于点O,作OP′⊥BC于P′.如图所示:
    在Rt△ABC中,∠BAC=90°,∠ACB=45°,AB=2,
    ∴AC=2,
    ∵四边形PAQC是平行四边形,
    ∴OA=OC=AC=,
    ∴OP′=1,
    当P与P′重合时,OP的值最小,则PQ的值最小,
    ∴PQ的最小值=2OP′=2.
    故答案为:2.
    三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)
    19.(6分)计算:()﹣1﹣2cs30°+|﹣|﹣(4﹣π)0.
    【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.
    【解答】解:原式=3﹣2×+﹣1
    =3﹣+﹣1
    =2.
    20.(6分)先化简,再求值:﹣,其中a=﹣5.
    【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
    【解答】解:原式=•﹣
    =﹣
    =﹣,
    当a=﹣5时,
    原式=﹣=1.
    21.(8分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).
    (1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;
    (2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.
    【分析】(1)根据轴对称的性质即可画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;
    (2)根据旋转的性质即可画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.
    【解答】解:(1)如图,△A1B1C1,即为所求,C1点的坐标为(3,﹣1);
    (2)如图,△A2B2C2,即为所求,B2点的坐标为(0,1).
    22.(8分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
    (1)求证:△AEF≌△DEB;
    (2)若∠BAC=90°,求证:四边形ADCF是菱形.
    【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;
    (2)根据平行四边形的判定和性质以及菱形的判定证明即可.
    【解答】证明:(1)∵E是AD的中点,
    ∴AE=DE,
    ∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵∠AEF=∠DEB,
    ∴△AEF≌△DEB;
    (2)∵△AEF≌△DEB,
    ∴AF=DB,
    ∵AD是BC边上的中线,
    ∴DC=DB,
    ∴AF=DC,
    ∵AF∥DC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,AD是BC边上的中线,
    ∴AD=DC,
    ∴▱ADCF是菱形.
    23.(8分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
    七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
    八年级20名学生的测试成绩条形统计图如图:
    七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
    根据以上信息,解答下列问题:
    (1)直接写出上述表中的a,b,c的值;
    (2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);
    (3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?
    【分析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;
    (2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;
    (3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.
    【解答】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,
    ∴a=7,
    由条形统计图可得,b=(7+8)÷2=7.5,
    c=(5+2+3)÷20×100%=50%,
    即a=7,b=7.5,c=50%;
    (2)八年级学生掌握垃圾分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃圾分类知识较好;
    (3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,
    ∴参加此次测试活动成绩合格的学生有1200×=1080(人),
    即参加此次测试活动成绩合格的学生有1080人.
    24.(10分)在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.
    (1)求甲、乙两条生产线每天的产能各是多少?
    (2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?
    (3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?
    【分析】(1)可设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,根据等量关系:乙用了的天数﹣甲用了的天数=2,列出方程即可求解;
    (2)可设安排乙生产线生产y天,根据完成这批任务总运行成本不超过40万元列出不等式计算即可求解;
    (3)根据题意求出原来满负荷生产3天的产能和再满负荷生产13天的产能的和,再与1440万个比较大小即可求解.
    【解答】解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有
    ﹣=2,
    解得x=20,
    经检验,x=20是原方程的解,
    2x=2×20=40,
    故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;
    (2)设安排乙生产线生产y天,依题意有
    0.5y+1.2×≤40,
    解得y≥32.
    故至少应安排乙生产线生产32天;
    (3)(40+20)×3+[40×(1+50%)+20×2]×13
    =180+1300
    =1480(万个),
    1440万个<1480万个,
    故再满负荷生产13天能完成任务.
    25.(10分)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.
    (1)经过多长时间,盛水筒P首次到达最高点?
    (2)浮出水面3.4秒后,盛水筒P距离水面多高?
    (3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.
    (参考数据:cs43°=sin47°≈,sin16°=cs74°≈,sin22°=cs68°≈)
    【分析】(1)如图1中,连接OA.求出∠AOC的度数,以及旋转速度即可解决问题.
    (2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,过点P作PD⊥OC于D,解直角三角形求出CD即可.
    (3)如图3中,连接OP,解直角三角形求出∠POM,∠COM,可得∠POH的度数即可解决问题.
    【解答】解:(1)如图1中,连接OA.
    由题意,筒车每秒旋转360°×÷60=5°,
    在Rt△ACO中,cs∠AOC===.
    ∴∠AOC=43°,
    ∴=27.4(秒).
    答:经过27.4秒时间,盛水筒P首次到达最高点.
    (2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,
    ∴∠POC=∠AOC+∠AOP=43°+17°=60°,
    过点P作PD⊥OC于D,
    在Rt△POD中,OD=OP•cs60°=3×=1.5(m),
    2.2﹣1.5=0.7(m),
    答:浮出水面3.4秒后,盛水筒P距离水面0.7m.
    (3)如图3中,
    ∵点P在⊙O上,且MN与⊙O相切,
    ∴当点P在MN上时,此时点P是切点,连接OP,则OP⊥MN,
    在Rt△OPM中,cs∠POM==,
    ∴∠POM=68°,
    在Rt△COM中,cs∠COM===,
    ∴∠COM=74°,
    ∴∠POH=180°﹣∠POM﹣∠COM=180°﹣68°﹣74°=38°,
    ∴需要的时间为=7.6(秒),
    答:盛水筒P从最高点开始,至少经过7.6秒恰好在直线MN上.
    26.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
    (1)求抛物线的表达式;
    (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
    (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
    【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
    (2)PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;
    (3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.
    【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为:y=﹣x2+x+4;
    (2)由抛物线的表达式知,点C(0,4),
    由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
    设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),
    ∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,
    ∵OB=OC,故∠ABC=∠OCB=45°,
    ∴∠PQN=∠BQM=45°,
    ∴PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,
    ∵﹣<0,故当m=2时,PN有最大值为;
    (3)存在,理由:
    点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
    ①当AC=CQ时,过点Q作QE⊥y轴于点E,连接AQ,
    则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
    解得:m=±(舍去负值),
    故点Q(,);
    ②当AC=AQ时,则AQ=AC=5,
    在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
    故点Q(1,3);
    ③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:m=(舍去);
    综上,点Q的坐标为(1,3)或(,).
    年级
    平均数
    众数
    中位数
    8分及以上人数所占百分比
    七年级
    7.5
    a
    7
    45%
    八年级
    7.5
    8
    b
    c
    年级
    平均数
    众数
    中位数
    8分及以上人数所占百分比
    七年级
    7.5
    a
    7
    45%
    八年级
    7.5
    8
    b
    c
    相关试卷

    2023年广西北海市合浦县九年级中考数学三模试卷: 这是一份2023年广西北海市合浦县九年级中考数学三模试卷,共18页。试卷主要包含了选择题等内容,欢迎下载使用。

    2023年广西北海市中考数学二模试卷(含解析): 这是一份2023年广西北海市中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022年广西北海市中考数学二模试卷(Word解析版): 这是一份2022年广西北海市中考数学二模试卷(Word解析版),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年广西北海市中考数学一模试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map