2021年四川省成都市高中统一招生考试 数学B卷专项突破训练(3)(word版,含答案)
展开2021年四川省成都市高中阶段教育学校统一招生考试
数学B卷专项突破(三)
(满分50分)
一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)
1.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为 dm.
2.定义运算x★y=,则的计算结果是 .
3.点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为 .
4.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=,则AC= ,CD= .
5.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为 .
二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)
6.(本小题满分8分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.
(1)求k1和b的值,并说明它们的实际意义;
(2)求打折前的每次健身费用和k2的值;
(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.
7.(本小题满分10分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.
为了证明点C的位置即为所求,不妨在直线l上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.
(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
8.(本小题满分12分)抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.
(1)试求二次函数及一次函数的解析式;
(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;
(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+CF的值最大时,求点E的坐标.
2021年四川省成都市高中阶段教育学校统一招生考试
数学B卷专项突破(三)
(满分50分)
参考答案与试题解析
一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)
1.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为 (4+) dm.
【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.
【解答】解:∵正方形ABCD的边长为4dm,
∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,
∴图2中h的值为(4+)dm.
故答案为:(4+).
【点评】本题考查正方形的性质,七巧板知识,解题的关键是得到②④⑥⑦的高解决问题.
2.定义运算x★y=,则的计算结果是 20 .
【分析】由已知定义逐项求出部分结果,从而得到所求式子的规律为==20.
【解答】解:∵x★y=,
∴2020★2020=,2020★2020★2020=★2020=,
2020★2020★2020★2020=★2020=,…,
∴==20,
故答案为20.
【点评】本题考查数字的变化规律;运用定义,通过逐步求出部分结果,从而总结出所求式子的规律是解题的关键.
3.点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为 .
【分析】设CD=DE=OE=a,则P(,3a),Q(,2a),R(,a),推出CP=,DQ=,ER=,推出OG=AG,OF=2FG,OF=GA,推出S1=S3=2S2,根据S1+S3=27,求出S1,S3,S2即可.
【解答】解:∵CD=DE=OE,
∴可以假设CD=DE=OE=a,
则P(,3a),Q(,2a),R(,a),
∴CP=,DQ=,ER=,
∴OG=AG,OF=2FG,OF=GA,
∴S1=S3=2S2,
∵S1+S3=27,
∴S3=,S1=,S2=,
解法二:∵CD=DE=OE,
∴S1=,S四边形OGQD=k,
∴S2=(k﹣×2)=,
S3=k﹣k﹣k=k,
∴k+k=27,
∴k=,
∴S2==.
故答案为.
【点评】本题考查反比例函数系数k的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
4.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=,则AC= 3 ,CD= .
【分析】连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.首先解直角三角形求出BH,CH,利用三角形的中位线定理求出OT,利用勾股定理求出AC,再利用相似三角形的性质构建方程组求出x即可解决问题.
【解答】解:连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.
∵BH是直径,
∴∠BCH=90°,
∵∠BAC=∠BHC,
∴sin∠BAC=sin∠BHC==,
∵BC=6,
∴BH=10,CH===8,
∵AB=AC,
∴=,
∴AT⊥BC,
∴BT=CT=3,
∵BO=OH,BT=TC,
∴OT=CH=4,
∴AT=AO+OT=5+4=9,
∴AC===3,
∵AB=AC,AT⊥BC,
∴∠DAO=∠CAO,
∵OA=OC,
∴∠CAO=∠OCA,
∴∠DAO=∠OCA,
∵∠ADO=∠CDA,
∴△DAO∽△DCA,
∴==,
∴==,
解得x=,
∴CD=OD+OC=+5=,
故答案为3,.
【点评】本题考查三角形的外接圆与外心,圆周角定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考填空题中的压轴题.
5.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为 16 .
【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.
【解答】解:∵四边形ABCD是正方形,
∴∠BAC=∠ADB=45°,
∵把△ABC绕点A逆时针旋转到△AB'C',
∴∠EAF=∠BAC=45°,
∵∠AEF=∠DEA,
∴△AEF∽△DEA,
∴=,
∴EF•ED=AE2,
∵AE=4,
∴EF•ED的值为16,
故答案为:16.
【点评】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.
二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)
6.(本小题满分8分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.
(1)求k1和b的值,并说明它们的实际意义;
(2)求打折前的每次健身费用和k2的值;
(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.
【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;
(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值;
(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.
【解答】解:(1)∵y1=k1x+b过点(0,30),(10,180),
∴,解得,
k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,
b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;
(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),
则k2=25×0.8=20;
(3)选择方案一所需费用更少.理由如下:
由题意可知,y1=15x+30,y2=20x.
当健身8次时,
选择方案一所需费用:y1=15×8+30=150(元),
选择方案二所需费用:y2=20×8=160(元),
∵150<160,
∴选择方案一所需费用更少.
【点评】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.
7.(本小题满分10分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.
为了证明点C的位置即为所求,不妨在直线l上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.
(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
【分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;
(2)①由(1)的结论可求;
②由(1)的结论可求解.
【解答】证明:(1)如图②,连接A'C',
∵点A,点A'关于l对称,点C在l上,
∴CA=CA',
∴AC+BC=A'C+BC=A'B,
同理可得AC'+C'B=A'C'+BC',
∵A'B<A'C'+C'B,
∴AC+BC<AC'+C'B;
(2)如图③,
在点C处建燃气站,铺设管道的最短路线是AC+CD+DB;(其中点D是正方形的顶点);
如图④,
在点C处建燃气站,铺设管道的最短路线是AC+CD++EB,(其中CD,BE都与圆相切)
【点评】本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.
8.(本小题满分12分)抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.
(1)试求二次函数及一次函数的解析式;
(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;
(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+CF的值最大时,求点E的坐标.
【分析】(1)首先确定点C的坐标,代入一次函数求出k,可得点B的坐标,设抛物线的解析式为y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,构建方程求出a即可解决问题.
(2)分两种情形:①当点P在直线BC的上方时,如图2﹣1中,作DH∥BC交y轴于H,过点D作直线DT交y轴于T,交BC于K,作PT∥BC交抛物线于P,直线PD交抛物线于Q.②当点P在直线BC的下方时,如图2﹣2中,分别求解即可解决问题.
(3)设E(m,m2﹣4m﹣5),则F(m,m﹣5),构建二次函数,利用二次函数的性质解决问题即可.
【解答】解:(1)∵抛物线y=ax2+bx﹣5的图象与y轴交于点C,
∴C(0,﹣5),
∵一次函数y=x+k的图象经过点B、C,
∴k=﹣5,
∴B(5,0),
设抛物线的解析式为y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,
∴﹣5a=﹣5,
∴a=1,
∴二次函数的解析式为y=x2﹣4x﹣5,一次函数的解析式为y=x﹣5.
(2)①当点P在直线BC的上方时,如图2﹣1中,作DH∥BC交y轴于H,过点D作直线DT交y轴于T,交BC于K,作PT∥BC交抛物线于P,直线PD交抛物线于Q.
∵S△CPD=3S△CQD,
∴PD=3DQ,
∵PT∥DH∥BC,
∴===3,
∵D(2,0),B(5,0),C(﹣5,0),
∴OC=OB=5,OD=OH=2,
∴HC=3,
∴TH=9,OT=7,
∴直线PT的解析式为y=x+7,
由,解得或,
∴P(,)或(,),
②当点P在直线BC的下方时,如图2﹣2中,
当点P与抛物线的顶点(2,﹣9)重合时,PD=9.DQ=3,
∴PQ=3DQ,
∴S△CPD=3S△CQD,
过点P作PP′∥BC,此时点P′也满足条件,
∵直线PP′的解析式为y=x﹣11,
由,解得或,
∴P′(3,﹣8),
综上所述,满足条件的点P的坐标为(,)或(,)或(2,﹣9)或(3,﹣8).
(3)设E(m,m2﹣4m﹣5),则F(m,m﹣5),
∴EF=(m﹣5)﹣(m2﹣4m﹣5)=5m﹣m2,CF=m,
∴EF+CF=﹣m2+6m=﹣(m﹣3)2+9,
∵﹣1<0,
∴m=3时,EF+CF的值最大,此时E(3,﹣8).
【点评】本题属于二次函数综合题,考查了待定系数法,二次函数的性质,一次函数的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会用转化的思想思考问题,属于中考压轴题.
2023年四川省巴中市高中阶段教育学校招生统一模拟考试数学试卷(五)(含答案): 这是一份2023年四川省巴中市高中阶段教育学校招生统一模拟考试数学试卷(五)(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省巴中市2023年高中阶段教育学校招生统一模拟考试数学试卷(三)(含答案): 这是一份四川省巴中市2023年高中阶段教育学校招生统一模拟考试数学试卷(三)(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年四川省成都市中考数学核心试题专题训练(word版含答案): 这是一份2022年四川省成都市中考数学核心试题专题训练(word版含答案),共23页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。