2021年山东省潍坊市中考数学模拟训练试卷(含答案解析)
展开
这是一份2021年山东省潍坊市中考数学模拟训练试卷(含答案解析),共25页。
A.2B.﹣2C.D.
下列图案中,是中心对称图形的是( )
A.B.C.D.
下列运算一定正确的是( )
A.B.C.D.
下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )
A.B.C.D.
如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( )
A.20°B.60°C.70°D.160°
一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是( ).
A.B.C.D.
分式方程+=1的解为( )
A.x=﹣1B.x=1C.x=2D.x=﹣2
在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是( )
A. B. C. D.
满足下列条件时,△ABC不是直角三角形的为( )
A.AB=,BC=4,AC=5B.AB:BC:AC=3:4:5
C.∠A:∠B:∠C=3:4:5D.|csA﹣|+(tanB﹣)2=0
某企业决定投资不超过20万元建造A.B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有( )
A.2种B.3种C.4种D.5种
反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是 ( )
A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是( )
A.ab<0
B.一元二次方程ax2+bx+c=0的正实数根在2和3之间
C.a=
D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2
、填空题(本大题共6小题,每小题3分,共18分)
使得代数式有意义的x的取值范围是 .
设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=_____.
如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是 °.
如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为 cm(圆锥的壁厚忽略不计).
如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为 .
如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_____.
、解答题(本大题共7小题,共66分)
(1)解方程:=+1;
(2)解不等式组:
如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角一般要满足,现有一架长为的梯子,当梯子底端离墙面时,此时人是否能够安全使用这架梯子(参考数据:,)?
在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点
O.求证:OA=OE
A
B
C
D
E
O
某校在参加了宜昌市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:
小明:“选科学素养和人文素养的同学分别为16人,12人.”
小颖:“选数学素养的同学比选阅读素养的同学少4人.”
小雯:“选科学素养的同学占样本总数的20%.”
(1)这次抽样调查了多少名学生?
(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?
(3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比,
(4)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?
如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.
(1)求证:∠ABC=∠CBD,
(2)若BC=4,CD=4,则⊙O的半径是 .
在中,,.点D在边上,且,交边于点F,连接.
(1)特例发现:如图1,当时,①求证:;②推断:_________.;
(2)探究证明:如图2,当时,请探究的度数是否为定值,并说明理由;
(3)拓展运用:如图3,在(2)的条件下,当时,过点D作的垂线,交于点P,交于点K,若,求的长.
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.
(1)求抛物线的函数表达式;
(2)求点D的坐标;
(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;
(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.
为了探索函数的图象与性质,我们参照学习函数的过程与方法.
列表:
描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:
(1)如图,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;
(2)已知点在函数图象上,结合表格和函数图象,回答下列问题:
若,则 ;
若,则 ;
若,则 (填“>”,“=”,“
相关试卷
这是一份2023年山东省潍坊市中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年山东省潍坊市中考数学试卷(解析版),共31页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省潍坊市中考数学三模试卷(含解析),共36页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。