年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省青岛胶州市2020-2021学年高一下学期期中考试:数学试题及答案

    山东省青岛胶州市2020-2021学年高一下学期期中考试:数学试题及答案第1页
    山东省青岛胶州市2020-2021学年高一下学期期中考试:数学试题及答案第2页
    山东省青岛胶州市2020-2021学年高一下学期期中考试:数学试题及答案第3页
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛胶州市2020-2021学年高一下学期期中考试:数学试题及答案

    展开

    这是一份山东省青岛胶州市2020-2021学年高一下学期期中考试:数学试题及答案,共11页。试卷主要包含了考试结束后,请将答题卡上交,设则大小关系正确的是,已知平面向量,且,则等内容,欢迎下载使用。
    2020—2021学年度第学期期中学业水平检测一数学试题本试卷共6页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。2回答选择题时选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时将答案写在答题卡上写在本试卷上无效3.考试结束后,请将答题卡上交。 一、单项选择题:本大题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1的值为     A B C D 2四边形为矩形,对角线长为,若,则     A B C D  3已知为虚数单位,下列与相等的是     A  B C  D  4已知为坐标原点,则下列说法正确的是     A  B三点共线 C三点共线  D 5已知角的内角,向量共线,则可以判断的形状为     A等腰三角形 B等腰直角三角形 C直角三角形 D等边三角形  6已知复数,其中为虚数单位,,若为纯虚数,则下列说法正确的是     A B复数在复平面内对应的点在第一象限 C D  7如图所示,为测量山高,选择和另一座山的山顶为测量观测点,从点测得点的仰角点的仰角以及,从点测得,若山高米,则山高等于     A B C D  8大小关系正确的是      A B C D    二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,选对但不全的得3分,有选错的得0 9关于一组样本数据的平均数、中位数、频率分布直方图和方差,下列说法正确的是     A改变其中一个数据,平均数和中位数都会发生改变 B频率分布直方图中,中位数左边和右边的直方图的面积应该相等 C若数据的频率分布直方图为单峰不对称,且在左边拖尾,则平均数小于中位数D样本数据的方差越小,说明样本数据的离散程度越小  10已知平面向量,且,则     A  B C夹角的大小为 D 11中,角的对边分别是下列说法正确的是     A为锐角三角形 B面积为 C长度为  D外接圆的面积为 12下列说法正确的是     A中,的充要条件 B将函数的图象向右平移个单位长度得到函数的图象 C存在实数,使得等式成立D中,若,则是钝角三角形    三、填空题:本大题共4小题,每小题5分,共20分.13某人任意统计5次上班步行到单位所花的时间(单位:分钟)分别为则这组数据的标准差为        14函数在区间上的值域为        15中, 已知,则        16右图为某校名高一学生的体育测试成绩的频率分布直方图,如果要按照分层抽样方式抽取名学生进行分析,则要抽取的之间的学生人数是        ;估计这名学生的体育测试平均成绩为        (本小题第一空2分,第二空3分)   四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17(本题满分10分)某蔬菜基地准备对现有地铺管道设施加装智能控制水泵系统,对大棚蔬菜进行自动控制根部滴灌,可以大大节省人力和资金地铺管道在达到满水最大压状态后,水泵自动停机,管道可以自动连续进行滴注工作至最小工作压,然后水泵会重新开启,不同性能的管道系统根据最小工作压需要配置与之压力性能相对应的水泵系统,不同品种的蔬菜由于需要的滴注速度和强度不同,可以选择配备不同性能的管道系统和水泵系统为充分了解基地内既有管道系统的总体情况,现随机抽取不同蔬菜棚内的若干条管道进行满水测试,对这些管道的最小工作压数据(单位:千帕)分组为将其按从左到右的顺序分别编号为第一组,第二组,,第五组图是根据实验数据制成的频率分布直方图,已知 1)求的值2)已知最小工作压在以上的管道系统都需要分别配备台大功率水泵,若第一组与第二组共有条管道,求该基地需要配备的大功率水泵的台数             18(本题满分12分)已知向量在复平面坐标系中,为虚数单位,复数对应的点为1)求2为曲线(的共轭复数)上的动点,求之间的最小距离3)若,求上的投影向量  19(本题满分12分)已知函数1)将函数化为形式,求的最小正周期和单调递增区间;2的内角,恰为的最大值,求3 20(本题满分12分)中,分别为角的对边,1)求2)若延长线上一点,连接的面积  21(本题满分12分)中,所在平面内的点,1为一组基底表示并求2为直线上一点若直线经过的垂心,求  22(本题满分12分)在平面直角坐标系中,已知1)若轴上的一动点,)当三点共线时,求坐标    的最小值2夹角,求的取值范围
    2020—2021学年度第学期期中学业水平检测高一数学 答案及评分标准一、单项选择题:本大题共8小题.每小题5分,共40分.1--8B C D B     A C A D  二、多项选择题:本大题共4小题.每小题5分,共20分.9BCD     10AC     11BD     12ABD三、填空题:本大题共4小题,每小题5分,共20分.13     14     15     1612四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:1根据分布列的特点,有·········································3 因为,所以························································52)第一组和第二组的频率为···········································6所以,管道总条数为·················································7所以最小工作压在以上的管道系统有·····································9所以该基地需要配备的大功率水泵的台数··································10 18. (本小题满分12分)解:1···························································1所以·······························································2所以·······························································3所以·······························································42······························································5曲线,即因此曲线是复平面内圆心,半径为的圆···································6之间的距离为·····················································7所以之间的最小距离为···············································83因为,所以······················································9此时的夹角余弦为················································10方向相同的单位向量为 ··············································11所以上的投影向量··················································12 19.(本小题满分12分)解:1 ··································································3所以的最小正周期·····················································4,得 所以的单调递增区间为·················································52因为,所以··························································6所以当·····························································7即当时,恰为的最大值·················································83··································································10因为,所以·························································12 20.(本小题满分12分)解:1)由题意,根据正弦定理,可得····································1 所以,即也即·······························································2因为所以,即······················································3所以·······························································52,所以由余弦定理······················································7解得·······························································8因为·······························································9中,因为,所以所以······························································10又因为····························································11所以=·····························································12 21.(本小题满分12分)解:1)由,所以为线段上靠近的三等分点·································1,所以为线段的中点·················································2···································································4因为·······························································5所以·······························································62为直线上一点,设···································································7···································································8因为直线经过的垂心,所以, 即··········································9所以解得······························································10所以因为,所以·························································12 22. (本小题满分12分)解:1,所以·············································1因为共线························································2所以,解得所以三点共线时,坐标············································3)因为关于轴的对称点为············································4所以·······························································5所以当三点共线时,取得最小值··········································6最小值即····························································7所以取得最小值2,所以 因为夹角,所以恒成立··············································8所以又因为可得 恒成立,又因为可得恒成立··························································9 所以······························································10因为,其中等号当且仅当成立···········································11所以时,有最小值所以的取值范围是:··················································12  

    相关试卷

    2020-2021年山东省青岛市胶州市高一数学下学期期中试卷及答案:

    这是一份2020-2021年山东省青岛市胶州市高一数学下学期期中试卷及答案,共11页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    精品解析:山东省青岛胶州市2019-2020学年高一下学期期末考试数学试题:

    这是一份精品解析:山东省青岛胶州市2019-2020学年高一下学期期末考试数学试题,文件包含精品解析山东省青岛胶州市2019-2020学年高一下学期期末考试数学试题解析版doc、精品解析山东省青岛胶州市2019-2020学年高一下学期期末考试数学试题原卷版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    山东省青岛市胶州市2022-2023学年高三上学期期中考试数学试题(含答案):

    这是一份山东省青岛市胶州市2022-2023学年高三上学期期中考试数学试题(含答案),共8页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map