广东省深圳市2021年中考数学模拟试卷(一)
展开深圳2021年中考数学模拟试卷
一、选择题
1.2020的相反数是( )
A.﹣2020 B.2020 C. D.﹣
2.下图中,属于中心对称图形的是(
A. B. C. D.
3.实数a,b在数轴上表示的位置如图所示,则( )
A.a>0 B.a>b C.a<b D.|a|<|b|
4.2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为( )
A.0.4×106 B.4×109 C.40×104 D.4×105
5.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为( )
A. B. C.3 D.5
6.已知等边三角形一边上的高为2,则它的边长为( )
A.2 B.3 C.4 D.4
7.将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )
A.y=(x+2)2﹣2 B.y=(x﹣4)2+2 C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+5
8.如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为( )
A.1cm B.cm C.(2﹣3)cm D.(2﹣)cm
9.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是( )
A. B. C. D.
10.如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是( )
A.①②③ B.①③ C.①② D.②③
二、填空题
11.因式分解:a2+ab﹣a= .
12.从﹣2,﹣1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于 .
13.如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为,将△AOB缩小,则点B的对应点B'的坐标是 .
(13)
(14) (15)
14.如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为 .
15.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为 .
16.计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.
17.先化简,再求值:
,其中x满足x2﹣x﹣1=0.
18.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)参加比赛的学生人数是 名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角α的度数;
(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.
19.如图,在平面直角坐标系中,点D、E分别在矩形OABC的边AB、BC上,顶点B的坐标是(6,3),=2,反比例函数y1=与一次函数y2=﹣x+b的交点恰好为点D和点E.
(1)填空:①k= ,b= ;
②当y1<y2时,x的取值范围是 ;
(2)若点A关于x轴对称的点为F,点P是反比例函数y1=图象上一点,且S△ODE=2S△OFP,求点P的坐标.
20.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
(1)A,B两种茶叶每盒进价分别为多少元?
(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?
21.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.
(1)求证:AD⊥BC;
(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.
①求证:AG与⊙O相切;
②当,CE=4时,直接写出CG的长.
22.如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.
(1)求抛物线的解析式;
(2)当tan∠EMF=时,直接写出t的值;
(3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM与NF相交于点P,当NP=FP时,求t的值.
2024年广东省深圳市中考数学模拟试卷: 这是一份2024年广东省深圳市中考数学模拟试卷,共7页。
2022年广东省深圳市中考数学模拟试卷: 这是一份2022年广东省深圳市中考数学模拟试卷,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省深圳市中考数学模拟试卷(一): 这是一份广东省深圳市中考数学模拟试卷(一),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。