初中数学北师大版七年级下册第四章 三角形综合与测试练习题
展开北师大新版七年级下册《第4章 三角形》1
一、选择题(共5小题)
1.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;
②BD⊥CE;
③∠ACE+∠DBC=45°;
④BE2=2(AD2+AB2),
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
2.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有( )
A.4个 B.3个 C.2个 D.1个
3.如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是( )
A.y=2x+1 B.y=x﹣2x2 C.y=2x﹣x2 D.y=2x
4.在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE; ②BG⊥CE; ③AM是△AEG的中线; ④∠EAM=∠ABC,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
5.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,等腰直角△ABC中,∠ACB=90°,三角形的三个顶点分别在这三条平行直线上,则sinα的值是( )
A. B. C. D.
二、填空题(共2小题)
6.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段 .
7.如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为 .
三、解答题(共23小题)
8.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.
9.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AC=3cm,则BE= cm.
10.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:BD=AE.
11.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.
求证:AC=OD.
12.如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
13.已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边的延长线上时,如图1所示,易证MF+FN=BE
(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.
(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)
14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
15.如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.
16.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为 度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.
17.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.
18.已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.
(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .
19.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 ;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
20.如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
21.如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.
22.(1)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
(2)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
23.探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.
应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为 .
24.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.
25.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.
26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.
27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
28.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.
(1)求证:∠CBP=∠ABP;
(2)求证:AE=CP;
(3)当,BP′=5时,求线段AB的长.
29.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.
(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为: ;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.
(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系: .
30.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
北师大新版七年级下册《第4章 三角形》1
参考答案与试题解析
一、选择题(共5小题)
1.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;
②BD⊥CE;
③∠ACE+∠DBC=45°;
④BE2=2(AD2+AB2),
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;
②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;
③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;
④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.
【解答】解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
∵在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE,故①正确;
②∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD⊥CE,故②正确;
③∵△ABC为等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠ABD+∠DBC=45°,
∵∠ABD=∠ACE
∴∠ACE+∠DBC=45°,故③正确;
④∵BD⊥CE,
∴在Rt△BDE中,利用勾股定理得:
BE2=BD2+DE2,
∵△ADE为等腰直角三角形,
∴DE=AD,
即DE2=2AD2,
∴BE2=BD2+DE2=BD2+2AD2,
而BD2≠2AB2,故④错误,
综上,正确的个数为3个.
故选:C.
2.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有( )
A.4个 B.3个 C.2个 D.1个
【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,
利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF﹣S△AOF=S△DAE﹣S△AOF,即S△AOB=S四边形DEOF.
【解答】解:∵四边形ABCD为正方形,
∴AB=AD=DC,∠BAD=∠D=90°,
而CE=DF,
∴AF=DE,
在△ABF和△DAE中
,
∴△ABF≌△DAE,
∴AE=BF,所以(1)正确;
∴∠ABF=∠EAD,
而∠EAD+∠EAB=90°,
∴∠ABF+∠EAB=90°,
∴∠AOB=90°,
∴AE⊥BF,所以(2)正确;
连结BE,
∵BE>BC,
∴BA≠BE,
而BO⊥AE,
∴OA≠OE,所以(3)错误;
∵△ABF≌△DAE,
∴S△ABF=S△DAE,
∴S△ABF﹣S△AOF=S△DAE﹣S△AOF,
∴S△AOB=S四边形DEOF,所以(4)正确.
故选:B.
3.如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是( )
A.y=2x+1 B.y=x﹣2x2 C.y=2x﹣x2 D.y=2x
【分析】过E作EH⊥BC于H,求出EH=CH,求出△BAP∽△HPE,得出=,求出EH=x,代入y=×CP×EH求出即可.
【解答】解:过E作EH⊥BC于H,
∵四边形ABCD是正方形,
∴∠DCH=90°,
∵CE平分∠DCH,
∴∠ECH=∠DCH=45°,
∵∠H=90°,
∴∠ECH=∠CEH=45°,
∴EH=CH,
∵四边形ABCD是正方形,AP⊥EP,
∴∠B=∠H=∠APE=90°,
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,
∴∠BAP=∠EPH,
∵∠B=∠H=90°,
∴△BAP∽△HPE,
∴=,
∴=,
∴EH=x,
∴y=×CP×EH
=(4﹣x)•x
y=2x﹣x2,
故选:C.
4.在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE; ②BG⊥CE; ③AM是△AEG的中线; ④∠EAM=∠ABC,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【分析】根据正方形的性质可得AB=AE,AC=AG,∠BAE=∠CAG=90°,然后求出∠CAE=∠BAG,再利用“边角边”证明△ABG和△AEC全等,根据全等三角形对应边相等可得BG=CE,判定①正确;设BG、CE相交于点N,根据全等三角形对应角相等可得∠ACE=∠AGB,然后求出∠CNG=90°,根据垂直的定义可得BG⊥CE,判定②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,根据同角的余角相等求出∠ABH=∠EAP,再利用“角角边”证明△ABH和△EAP全等,根据全等三角形对应角相等可得∠EAM=∠ABC判定④正确,全等三角形对应边相等可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用“角角边”证明△EPM和△GQM全等,根据全等三角形对应边相等可得EM=GM,从而得到AM是△AEG的中线.
【解答】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,
即∠CAE=∠BAG,
∵在△ABG和△AEC中,
,
∴△ABG≌△AEC(SAS),
∴BG=CE,(故①正确);
设BG、CE相交于点N,
∵△ABG≌△AEC,
∴∠ACE=∠AGB,
∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,
∴∠CNG=360°﹣(∠NCF+∠NGF+∠F)=360°﹣(180°+90°)=90°,
∴BG⊥CE,(故②正确);
过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,
∵AH⊥BC,
∴∠ABH+∠BAH=90°,
∵∠BAE=90°,
∴∠EAP+∠BAH=180°﹣90°=90°,
∴∠ABH=∠EAP,
∵在△ABH和△EAP中,
,
∴△ABH≌△EAP(AAS),
∴∠EAM=∠ABC,(故④正确),
EP=AH,
同理可得GQ=AH,
∴EP=GQ,
∵在△EPM和△GQM中,
,
∴△EPM≌△GQM(AAS),
∴EM=GM,
∴AM是△AEG的中线,(故③正确).
综上所述,①②③④结论都正确.
故选:A.
5.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,等腰直角△ABC中,∠ACB=90°,三角形的三个顶点分别在这三条平行直线上,则sinα的值是( )
A. B. C. D.
【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,再根据等腰直角三角形斜边等于直角边的倍求出AB,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
在Rt△ACD中,AC===,
在等腰直角△ABC中,AB=AC=×=,
∴sinα==.
故选:D.
二、填空题(共2小题)
6.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段 AC=BD(答案不唯一) .
【分析】利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.
【解答】解:∵在△ABC和△BAD中,
,
∴△ABC≌△BAD(AAS),
∴AC=BD,AD=BC.
故答案为:AC=BD(答案不唯一).
7.如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为 8 .
【分析】利用旋转的性质以及矩形的判定得出AC′=B′D=AC=4,进而利用三角形面积公式求出即可.
【解答】解:根据题意得出旋转后图形,AC′⊥AC,过点B'作B′D⊥AC于点D,
∵∠C′AC=∠AC′B′=∠ADB′,
∴四边形C′ADB′是矩形,
∴AC′=B′D=AC=4,
∴△AB′C的面积为:×AC×B′D=×4×4=8.
故答案为:8.
三、解答题(共23小题)
8.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.
【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.
【解答】证明:∵BE=FC,
∴BE+EF=CF+EF,
即BF=CE;
又∵AB=DC,∠B=∠C,
∴△ABF≌△DCE(SAS),
∴∠A=∠D.
9.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AC=3cm,则BE= 6 cm.
【分析】(1)求出∠ACD=∠BCE,根据SAS推出两三角形全等即可;
(2)根据全等得出AD=BE,根据勾股定理求出AB,即可求出AD,代入求出即可.
【解答】(1)证明:∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中
,
∴△ACD≌△BCE(SAS);
(2)解:∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3,
又∵DB=AB,
∴AD=2AB=6,
∵△ACD≌△BCE;
∴BE=AD=6,
故答案为:6.
10.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:BD=AE.
【分析】根据等腰直角三角形的性质可得AC=BC,CD=CE,再根据同角的余角相等求出∠ACE=∠BCD,然后利用“边角边”证明△ACE和△BCD全等,然后根据全等三角形对应边相等即可证明.
【解答】证明:∵△ABC和△ECD都是等腰直角三角形,
∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°,
∴∠ACE+∠ACD=∠BCD+∠ACD,
∴∠ACE=∠BCD,
在△ACE和△BCD中,,
∴△ACE≌△BCD(SAS),
∴BD=AE.
11.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.
求证:AC=OD.
【分析】根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.
【解答】证明:∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∵AC⊥l,BD⊥l,
∴∠ACO=∠BDO=90°,
∴∠A+∠AOC=90°,
∴∠A=∠BOD,
在△AOC和△OBD中,,
∴△AOC≌△OBD(AAS),
∴AC=OD.
12.如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
【分析】根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.
【解答】证明:∵AD是△ABC的中线,
∴BD=CD,
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,
,
∴△BDE≌△CDF(AAS),
∴BE=CF.
13.已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边的延长线上时,如图1所示,易证MF+FN=BE
(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.
(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)
【分析】(1)首先对结论作出否定,写出猜想FN﹣MF=BE,连接AD,根据M、N分别是DE、AE的中点,可得MN=AD,再根据题干条件证明△ACD≌△BCE,得出AD=BE,结合MN=FN﹣MF,于是证明出猜想.
(2)连接AD,根据M、N分别是DE、AE的中点,可得MN=AD,再根据题干条件证明△ACD≌△BCE,得出AD=BE,结合MN=FM﹣FN,得到结论MF﹣FN=BE.
【解答】(1)答:不成立,
猜想:FN﹣MF=BE,
理由如下:
证明:如图2,连接AD,
∵M、N分别是DE、AE的中点,
∴MN=AD,
又∵在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∵MN=FN﹣MF,
∴FN﹣MF=BE;
(2)图3结论:MF﹣FN=BE,
证明:如图3,连接AD,
∵M、N分别是DE、AE的中点,
∴MN=AD,
∵在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴MN=BE,
∵MN=FM﹣FN,
∴MF﹣FN=BE.
14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
【分析】(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE全等,再根据全等三角形对应边相等证明即可;
(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.
【解答】证明:(1)∵AB=AC,D是BC的中点,
∴∠BAE=∠EAC,
在△ABE和△ACE中,,
∴△ABE≌△ACE(SAS),
∴BE=CE;
(2)∵∠BAC=45°,BF⊥AF,
∴△ABF为等腰直角三角形,
∴AF=BF,
∵AB=AC,点D是BC的中点,
∴AD⊥BC,
∴∠EAF+∠C=90°,
∵BF⊥AC,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF,
在△AEF和△BCF中,,
∴△AEF≌△BCF(ASA).
15.如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.
【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC,继而可得出结论.
【解答】证明:∵∠1=∠2,
∴∠1+ECA=∠2+∠ACE,
即∠ACB=∠DCE,
在△ABC和△DEC中,
∵
∴△ABC≌△DEC(SAS).
∴DE=AB.
16.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为 60 度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.
【分析】(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;
(2)①求出∠DAE,即可得到旋转角度数;
②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.
【解答】(1)证明:∵△ABD和△ACE都是等边三角形.
∴AB=AD,AE=AC,∠BAD=∠CAE=60°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠DAC,
在△BAE和△DAC中,
,
∴△BAE≌△DAC(SAS),
∴BE=CD;
(2)解:①∵∠BAD=∠CAE=60°,
∴∠DAE=180°﹣60°×2=60°,
∵边AD′落在AE上,
∴旋转角=∠DAE=60°.
故答案为:60.
②当AC=2AB时,△BDD′与△CPD′全等.
理由如下:由旋转可知,AB′与AD重合,
∴AB=BD=DD′=AD′,
∴四边形ABDD′是菱形,
∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,
∵△ACE是等边三角形,
∴AC=AE,∠ACE=60°,
∵AC=2AB,
∴AE=2AD′,
∴∠PCD′=∠ACD′=∠ACE=×60°=30°,
又∵DP∥BC,
∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,
在△BDD′与△CPD′中,
,
∴△BDD′≌△CPD′(ASA).
17.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.
【分析】要证明BE=CD,把BE与CD分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA可得出三角形ABE与三角形ACD全等,利用全等三角形的对应边相等可得证.
【解答】证明:在△ABE和△ACD中,
,
∴△ABE≌△ACD(ASA),
∴BE=CD(全等三角形的对应边相等).
18.已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.
(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .
【分析】(1)过点C作CE⊥CB于点C,与MN交于点E,证明△ACE≌△DCB,则△ECB为等腰直角三角形,据此即可得到BE=CB,根据BE=AB﹣AE即可证得;
(2)过点B作BH⊥CD于点H,证明△BDH是等腰直角三角形,求得DH的长,在直角△BCH中,利用直角三角形中30°的锐角所对的直角边等于斜边的一半,即可求得.
【解答】解:(1)如图(2):AB﹣BD=CB.
证明:过点C作CE⊥CB于点C,与MN交于点E,
∵∠ACD=90°,
∴∠ACE=90°﹣∠DCE,∠BCD=90°﹣∠ECD,
∴∠BCD=∠ACE.
∵DB⊥MN,
∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,
∵∠AFC=∠BFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE=CB.
又∵BE=AB﹣AE,
∴BE=AB﹣BD,
∴AB﹣BD=CB.
如图(3):BD﹣AB=CB.
证明:过点C作CE⊥CB于点C,与MN交于点E,
∵∠ACD=90°,
∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,
∴∠BCD=∠ACE.
∵DB⊥MN,
∴∠CAE=90°﹣∠AFB,∠D=90°﹣∠CFD,
∵∠AFB=∠CFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE=CB.
又∵BE=AE﹣AB,
∴BE=BD﹣AB,
∴BD﹣AB=CB.
(2)MN在绕点A旋转过程中,这个的意思并没有指明是哪种情况,
∴综合了第一个图和第二个图两种情况
若是第1个图:易证△ACE≌△DCB,CE=CB,
∴△ECB为等腰直角三角形,
∴∠AEC=45°=∠CBD,
过D作DH⊥CB.则△DHB为等腰直角三角形.
BD=BH,
∴BH=DH=1.
直角△CDH中,∠DCH=30°,
∴CD=2DH=2,CH=.
∴CB=+1
若是第二个图:过D作DH⊥CB交CB延长线于H.
解法类似上面,CD=2,但是CB=﹣1.
19.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 DE=BC ;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
【分析】(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;
(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;
(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.
【解答】解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵点D是AB的中点,
∴DB=DC,
∴△DCB为等边三角形,
∵DE⊥BC,
∴DE=BC;
故答案为DE=BC.
(2)BF+BP=DE.理由如下:
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC﹣BP,
∴BF+BP=BC,
∵DE=BC,
∴BC=DE,
∴BF+BP=DE;
(3)如图,
与(2)一样可证明△DCP≌△DBF,
∴CP=BF,
而CP=BC+BP,
∴BF﹣BP=BC,
∴BF﹣BP=DE.
20.如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
【分析】过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证,
【解答】证明:如图,过点B作BF⊥CE于F,
∵CE⊥AD,
∴∠D+∠DCE=90°,
∵∠BCD=90°,
∴∠BCF+∠DCE=90°,
∴∠BCF=∠D,
在△BCF和△CDE中,,
∴△BCF≌△CDE(AAS),
∴BF=CE,
又∵∠A=90°,CE⊥AD,BF⊥CE,
∴四边形AEFB是矩形,
∴AE=BF,
∴AE=CE.
21.如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.
【分析】根据平行线性质得出∠1=∠F,∠2=∠A,求出AE=EC,根据AAS证△ADE≌△CFE,根据全等三角形的性质推出即可.
【解答】证明:∵CF∥AB,
∴∠1=∠F,∠2=∠A,
∵点E为AC的中点,
∴AE=EC,
在△ADE和△CFE中
∴△ADE≌△CFE(AAS),
∴AD=CF.
22.(1)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
(2)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
【分析】(1)①求出∠ABE=∠CBD,然后利用“边角边”证明△ABE和△CBD全等即可;
②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可;
(2)设甲工厂每天能加工x件产品,表示出乙工厂每天加工1.5x件产品,然后根据甲加工产品的时间比乙加工产品的时间多10天列出方程求解即可.
【解答】(1)①证明:∵∠ABC=90°,D为AB延长线上一点,
∴∠ABE=∠CBD=90°,
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
②解:∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
∵∠CAE=30°,
∴∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°,
∴∠BDC=90°﹣∠BCD=90°﹣15°=75°;
(2)解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品,
根据题意得,﹣=10,
解得x=40,
经检验,x=40是原方程的解,并且符合题意,
1.5x=1.5×40=60,
答:甲、乙两个工厂每天分别能加工40件、60件新产品.
23.探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.
应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为 152 .
【分析】探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;
应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.
【解答】解:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,
∵AE⊥CD,∠BCD=90°,
∴四边形AFCE为矩形,
∴∠FAE=90°,
∴∠FAB+∠BAE=90°,
∵∠EAD+∠BAE=90°,
∴∠FAB=∠EAD,
∵在△AFB和△AED中,
,
∴△AFB≌△AED(AAS),
∴AF=AE,
∴四边形AFCE为正方形,
∴S四边形ABCD=S正方形AFCE=AE2=102=100;
应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,
则∠ADF+∠ADC=180°,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADF,
∵在△ABE和△ADF中,
,
∴△ABE≌△ADF(AAS),
∴AF=AE=19,
∴S四边形ABCD=S△ABC+S△ACD
=BC•AE+CD•AF
=×10×19+×6×19
=95+57
=152.
故答案为:152.
24.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.
【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出△DOF≌△BOE即可.
【解答】证明:∵△ABO与△CDO关于O点中心对称,
∴OB=OD,OA=OC,
∵AF=CE,
∴OF=OE,
∵在△DOF和△BOE中
∴△DOF≌△BOE(SAS),
∴FD=BE.
25.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.
【分析】根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.
【解答】证明:∵C是AB的中点,
∴AC=BC,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SSS),
∴∠A=∠B.
26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.
【分析】先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.
【解答】证明:∵∠BCE=∠DCA,
∴∠BCE+∠ACE=∠DCA+∠ACE,
即∠ACB=∠ECD,
在△ABC和△EDC中,,
∴△ABC≌△EDC(ASA),
∴BC=DC.
27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
【分析】(1)求出∠ABC的度数,即可求出答案;
(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;
(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.
【解答】(1)解:∵AB=AC,∠A=α,
∴∠ABC=∠ACB,∠ABC+∠ACB=180°﹣∠A,
∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,
∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,
即∠ABD=30°﹣α;
(2)△ABE是等边三角形,
证明:连接AD,CD,ED,
∵线段BC绕B逆时针旋转60°得到线段BD,
则BC=BD,∠DBC=60°,
∵∠ABE=60°,
∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,
在△ABD与△ACD中
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD=∠BAC=α,
∵∠BCE=150°,
∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,
在△ABD和△EBC中
∴△ABD≌△EBC(AAS),
∴AB=BE,
∴△ABE是等边三角形;
(3)解:∵∠BCD=60°,∠BCE=150°,
∴∠DCE=150°﹣60°=90°,
∵∠DEC=45°,
∴△DEC为等腰直角三角形,
∴DC=CE=BC,
∵∠BCE=150°,
∴∠EBC=(180°﹣150°)=15°,
∵∠EBC=30°﹣α=15°,
∴α=30°.
28.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.
(1)求证:∠CBP=∠ABP;
(2)求证:AE=CP;
(3)当,BP′=5时,求线段AB的长.
【分析】(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;
(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;
(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EP′P相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.
【解答】(1)证明:∵AP′是AP旋转得到,
∴AP=AP′,
∴∠APP′=∠AP′P,
∵∠C=90°,AP′⊥AB,
∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,
又∵∠BPC=∠APP′(对顶角相等),
∴∠CBP=∠ABP;
(2)证明:如图,过点P作PD⊥AB于D,
∵∠CBP=∠ABP,∠C=90°,
∴CP=DP,
∵P′E⊥AC,
∴∠EAP′+∠AP′E=90°,
又∵∠PAD+∠EAP′=90°,
∴∠PAD=∠AP′E,
在△APD和△P′AE中,,
∴△APD≌△P′AE(AAS),
∴AE=DP,
∴AE=CP;
(3)解:∵=,
∴设CP=3k,PE=2k,
则AE=CP=3k,AP′=AP=3k+2k=5k,
在Rt△AEP′中,P′E==4k,
∵∠C=90°,P′E⊥AC,
∴∠CBP+∠BPC=90°,∠EP′P+∠EPP′=90°,
∵∠BPC=∠EPP′(对顶角相等),
∴∠CBP=∠EP′P,
又∵∠CBP=∠ABP,∴∠ABP=∠EP′P,
又∵∠BAP′=∠P′EP=90°,
∴△ABP′∽△EP′P,
∴=,
即=,
解得P′A=AB,
在Rt△ABP′中,AB2+P′A2=BP′2,
即AB2+AB2=(5)2,
解得AB=10.
29.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.
(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为: EF⊥FG,EF=FG ;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.
(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系: BF+BP=EQ .
【分析】(1)根据线段中点的定义求出AE=AF=BF=BG,然后利用“边角边”证明△AEF和△BFG全等,根据全等三角形对应边相等可得EF=FG,全等三角形对应角相等可得∠AFE=∠BFG=45°,再求出∠EFG=90°,然后根据垂直的定义证明即可;
(2)取BC的中点G,连接FG,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△FQE和△FPG全等,根据全等三角形对应边相等可得QE=FG,BF=BG,再根据BG+GP=BP等量代换即可得证;
(3)根据题意作出图形,然后同(2)的思路求解即可.
【解答】解:(1)∵点E、F分别是边AD、AB的中点,G是BC的中点,
∴AE=AF=BF=BG,
在△AEF和△BFG中,
,
∴△AEF≌△BFG(SAS),
∴EF=FG,∠AFE=∠BFG=45°,
∴EF⊥FG,EF=FG;
(2)BF+EQ=BP.
理由:如图2,取BC的中点G,连接FG,
则EF⊥FG,EF=FG,
∴∠1+∠2=90°,
又∵∠2+∠3=90°,
∴∠1=∠3,
在△FQE和△FPG中,
,
∴△FQE≌△FPG(SAS),
∴QE=PG且BF=BG,
∵BG+GP=BP,
∴BF+EQ=BP;
(3)如图3所示,BF+BP=EQ.
30.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【解答】(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.
(2)四边形ADCF是菱形,
证明:AF∥BC,AF=DC,
∴四边形ADCF是平行四边形,
∵AC⊥AB,AD是斜边BC的中线,
∴AD=BC=DC,
∴平行四边形ADCF是菱形.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/11/14 9:43:00;用户:张瑞兰;邮箱:15963432934;学号:30210107
初中北师大版第五章 生活中的轴对称综合与测试随堂练习题: 这是一份初中北师大版第五章 生活中的轴对称综合与测试随堂练习题,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北师大版七年级下册1 同底数幂的乘法测试题: 这是一份北师大版七年级下册1 同底数幂的乘法测试题,共15页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
北师大版七年级下册第二章 相交线与平行线综合与测试随堂练习题: 这是一份北师大版七年级下册第二章 相交线与平行线综合与测试随堂练习题,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。