2021年人教版八年级数学下册暑假复习巩固提高讲义 第13讲 函数与方程 不等式(无答案)
展开2019年暑假八年级数学下册复习讲义
第十三讲 函数 方程 不等式
姓名:﹍﹍﹍﹍ 分数:﹍﹍﹍﹍
主要知识点
求l1与l2的交点坐标就是
解关于x、y的二元一次方程组函数。
一次函数的图象与x轴相交与一点,在x轴上方的部分,直线上的点对应的函数值y是正数,即;在x轴下方的部分,直线上的点对应的函数值y是负数,即;即可以通过画一次函数的图象求出对应的一元一次不等式的解集。
考查角度1:函数 方程 不等式
例题1:
1.方程x+1=0的解就是函数y=x+1的图象与( )
A. x轴交点的横坐标 B. y轴交点的横坐标
C. y轴交点的纵坐标 D. 以上都不对
2.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( )
A. B. C. D.
3. 直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,关于x的不等式k2x>k1x+b的解集为( )
A. x>﹣1 B. x<﹣1 C. x<﹣2 D. 无法确定
4. 一次函数y1=3x+3与y2=﹣2x+8在同一直角坐标系内的交点坐标为(1,6).则当y1>y2时,x的取值范围是( )
A. x≥1 B. x=1 C. x<1 D. x>1
5.若直线y=3x+6与直线y=2x+4的交点坐标为(a,b),则解为的方程组是( )
A. B. C. D.
6. 若方程组的解是,则两条直线y=k1x+b1和y=k2x+b2的交点坐标为( )
A. (2,3) B. (﹣2,3) C. (2,﹣3) D. (﹣2,﹣3)
7. 无论m取任何实数,直线y=x+m与y=﹣x+4的交点不可能在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
练习:
1. 直线y=2x+b与x轴的交点坐标是(﹣2,0),则关于x的方程2x+b=0的解是x= .
2. 已知一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,﹣2),则关于x的方程x+2=mx+n的解是 .
3. 如图,已知函数y=x+b和y=ax+4的图象交点为P,则不等式x+b>ax+4的解集为 .
4. 直线l1:y=kx+b与直线l2:y=﹣3x在同一平面直角坐标系内的图象如图,则关于x,y的方程组的解为 .
5.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,
求:(1)方程kx+b=0的解;
(2)式子2k+b的值;
(3)方程kx+b=﹣3的解.
考查角度2:实际问题列函数
例题2:
1. 为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为( )
A. y=100t(15<t≤23) B. y=100t﹣500(15<t≤23)
C. y=50t+650(15<t≤23) D. y=100t+500(15<t≤23)
2. 小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(米),则y与t(8<t≤12)的函数关系为( )
A. y=0.5t(8<t≤12) B. y=0.5t+2(8<t≤12)
C. y=0.5t+8(8<t≤12) D. y=0.5t﹣2(8<t≤12)
练习:
1. 我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
2. 某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:
(1)分别写出yA、yB与x之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
2021年人教版八年级数学下册暑假复习巩固提高讲义 第7讲 正方形中的全等模型(无答案): 这是一份2021年人教版八年级数学下册暑假复习巩固提高讲义 第7讲 正方形中的全等模型(无答案),共5页。
2021人教版八年级数学下册暑假复习巩固提高讲义 第2讲 勾股定理(无答案): 这是一份2021人教版八年级数学下册暑假复习巩固提高讲义 第2讲 勾股定理(无答案),共7页。
2021人教版八年级数学下册暑假复习巩固提高讲义 第11讲 一次函数(1)(无答案): 这是一份2021人教版八年级数学下册暑假复习巩固提高讲义 第11讲 一次函数(1)(无答案),共6页。