|试卷下载
搜索
    上传资料 赚现金
    2020年江苏省扬州市中考数学试卷
    立即下载
    加入资料篮
    2020年江苏省扬州市中考数学试卷01
    2020年江苏省扬州市中考数学试卷02
    2020年江苏省扬州市中考数学试卷03
    还剩15页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年江苏省扬州市中考数学试卷

    展开
    这是一份2020年江苏省扬州市中考数学试卷,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    
    2020年江苏省扬州市中考数学试卷
    题号



    总分
    得分





    一、选择题(本大题共8小题,共24.0分)
    1. 实数3的相反数是(  )
    A. -3 B. C. 3 D. ±3
    2. 下列各式中,计算结果为m6的是(  )
    A. m2•m3 B. m3+m3 C. m12÷m2 D. (m2 )3
    3. 在平面直角坐标系中,点P(x2+2,-3)所在的象限是(  )
    A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
    4. “致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是(  )
    A. B.
    C. D.
    5. 某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:

    准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是(  )
    A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤
    6. 如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为(  )
    A. 100米
    B. 80米
    C. 60米
    D. 40米



    7. 如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为(  )
    A.
    B.
    C.
    D.



    8. 小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足(  )

    A. a>0,b>0 B. a>0,b<0 C. a<0,b>0 D. a<0,b<0
    二、填空题(本大题共10小题,共30.0分)
    9. 2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为______.
    10. 分解因式:a3-2a2+a=______.
    11. 代数式在实数范围内有意义,则实数x的取值范围是______.
    12. 方程(x+1)2=9的根为______.
    13. 圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为______.
    14. 《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面______尺高.






    15. 大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为______cm2.
    16. 如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=______cm.




    17. 如图,在△ABC中,按以下步骤作图:
    ①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
    ②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.
    ③作射线BF交AC于点G.
    如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.
    18. 如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.


    三、解答题(本大题共10小题,共96.0分)
    19. 计算或化简:
    (1)2sin60°+()-1-.
    (2)÷.







    20. 解不等式组并写出它的最大负整数解.







    21. 扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.

    根据以上信息,回答下列问题:
    (1)本次调查的样本容量是______,扇形统计图中表示A等级的扇形圆心角为______°;
    (2)补全条形统计图;
    (3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.







    22. 防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
    (1)小明从A测温通道通过的概率是______;
    (2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.







    23. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
    进货单
    商品
    进价(元/件)
    数量(件)
    总金额(元)


    7200

    3200
    商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
    李阿姨:我记得甲商品进价比乙商品进价每件高50%.
    王师傅:甲商品比乙商品的数量多40件.
    请你求出乙商品的进价,并帮助他们补全进货单.







    24. 如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
    (1)若OE=,求EF的长;
    (2)判断四边形AECF的形状,并说明理由.









    25. 如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
    (1)试判断AE与⊙O的位置关系,并说明理由;
    (2)若AC=6,求阴影部分的面积.









    26. 阅读感悟:
    有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
    已知实数x、y满足3x-y=5①,2x+3y=7②,求x-4y和7x+5y的值.
    本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x-4y=-2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
    解决问题:
    (1)已知二元一次方程组则x-y=______,x+y=______;
    (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
    (3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=______.







    27. 如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
    (1)求证:OC∥AD;
    (2)如图2,若DE=DF,求的值;
    (3)当四边形ABCD的周长取最大值时,求的值.










    28. 如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
    (1)当n=1时.
    ①求线段AB所在直线的函数表达式.
    ②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
    (2)若小明的说法完全正确,求n的取值范围.









    答案和解析
    1.【答案】A

    【解析】解:实数3的相反数是:-3.
    故选:A.
    直接利用相反数的定义分析得出答案.
    此题主要考查了相反数,解题关键是掌握相反数的概念:只有符号不同的两个数叫做互为相反数.
    2.【答案】D

    【解析】解:A、m2•m3=m5,故此选项不合题意;
    B、m3+m3=2m3,故此选项不合题意;
    C、m12÷m2=m10,故此选项不合题意;
    D、(m2 )3=m6,故此选项符合题意.
    故选:D.
    直接利用同底数幂的惩处以及合并同类项法则分别判断得出答案.
    此题主要考查了同底数幂的乘除法以及合并同类项,正确掌握相关运算法则是解题关键.
    3.【答案】D

    【解析】解:∵x2+2>0,
    ∴点P(x2+2,-3)所在的象限是第四象限.
    故选:D.
    直接利用各象限内点的坐标特点分析得出答案.
    此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.
    4.【答案】C

    【解析】解:A、是轴对称图形,故本选项不合题意;
    B、是轴对称图形,故本选项不合题意;
    C、不是轴对称图形,故本选项符合题意;
    D、是轴对称图形,故本选项不合题意.
    故选:C.
    根据轴对称图形的概念对各选项分析判断利用排除法求解.
    本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    5.【答案】C

    【解析】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,
    故选:C.
    根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.
    本题考查设置问卷的方法,一般情况下问卷的各个选项之间相对独立,不能有重合或交叉的地方.
    6.【答案】B

    【解析】解:∵小明每次都是沿直线前进10米后向左转45度,
    ∴他走过的图形是正多边形,
    ∴边数n=360°÷45°=8,
    ∴他第一次回到出发点A时,一共走了8×10=80(m).
    故选:B.
    根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.
    本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.
    7.【答案】A

    【解析】解:如图,连接BC.
    ∵∠ADC和∠ABC所对的弧长都是,
    ∴根据圆周角定理知,∠ADC=∠ABC.
    在Rt△ACB中,根据锐角三角函数的定义知,
    sin∠ABC=,
    ∵AC=2,BC=3,
    ∴AB==,
    ∴sin∠ABC==,
    ∴sin∠ADC=.
    故选:A.
    首先根据圆周角定理可知,∠ADC=∠ABC,然后在Rt△ACB中,根据锐角三角函数的定义求出∠ABC的正弦值.
    本题考查了圆周角定理,解直角三角形,勾股定理,锐角三角函数的定义,解答本题的关键是利用圆周角定理把求∠ADC的正弦值转化成求∠ABC的正弦值,本题是一道比较不错的习题.
    8.【答案】D

    【解析】解:由图象可知,当x>0时,y<0,
    ∴a<0;
    ∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,
    ∴b<0;
    故选:D.
    由图象可知,当x>0时,y<0,可知a<0;图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,则b<0;
    本题考查函数的图象;能够通过已学的反比例函数图象确定b的取值是解题的关键.
    9.【答案】6.5×106

    【解析】解:6500000用科学记数法表示应为:6.5×106,
    故答案为:6.5×106.
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10.【答案】a(a-1)2

    【解析】解:a3-2a2+a
    =a(a2-2a+1)
    =a(a-1)2.
    故答案为:a(a-1)2.
    此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.
    本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    11.【答案】x≥-2

    【解析】解:代数式在实数范围内有意义,
    则x+2≥0,
    解得:x≥-2.
    故答案为:x≥-2.
    直接利用二次根式有意义的条件分析得出答案.
    此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键.
    12.【答案】x1=2,x2=-4

    【解析】解:(x+1)2=9,
    x+1=±3,
    x1=2,x2=-4.
    故答案为:x1=2,x2=-4.
    根据直接开平方法的步骤先把方程两边分别开方,再进行计算即可.
    此题考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解,本题直接开方求解即可.
    13.【答案】4

    【解析】解:∵S侧=πrl,
    ∴3πl=12π,
    ∴l=4.
    答:这个圆锥的母线长为4.
    故答案为:4.
    根据圆锥的侧面积公式:S侧=2πr•l=πrl即可进行计算.
    本题考查了圆锥的计算,解决本题的关键是掌握扇形面积公式.
    14.【答案】4.55

    【解析】解:设折断处离地面x尺,
    根据题意可得:x2+32=(10-x)2,
    解得:x=4.55.
    答:折断处离地面4.55尺.
    故答案为:4.55.
    根据题意结合勾股定理得出折断处离地面的高度即可.
    此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.
    15.【答案】2.4

    【解析】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
    ∴点落入黑色部分的概率为0.6,
    ∵边长为2cm的正方形的面积为4cm2,
    设黑色部分的面积为S,
    则=0.6,
    解得S=2.4(cm2).
    答:估计黑色部分的总面积约为2.4cm2.
    故答案为:2.4.
    经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,可得点落入黑色部分的概率为0.6,根据边长为2cm的正方形的面积为4cm2,进而可以估计黑色部分的总面积.
    本题考查了利用频率估计概率,解决本题的关键是掌握概率公式.
    16.【答案】

    【解析】解:如图,连接AC,过点B作BD⊥AC于D,
    由正六边形,得
    ∠ABC=120°,AB=BC=a,
    ∠BCD=∠BAC=30°.
    由AC=3,得CD=1.5.
    cos∠BCD==,即=,
    解得a=,
    故答案为:.
    根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.
    本题考查了正多边形和圆,利用了正六边形的性质得出等腰三角形是解题的关键,又利用了正三角形的性质,余弦函数,
    17.【答案】27

    【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,

    根据作图过程可知:
    BG是∠ABC的平分线,
    ∴GM=GN,
    ∵△ABG的面积为18,
    ∴AB×GM=18,
    ∴4GM=18,
    ∴GM=,
    ∴△CBG的面积为:BC×GN=12×=27.
    故答案为:27.
    过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.
    本题考查了作图-基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.
    18.【答案】9

    【解析】解:作CH⊥AB于点H,
    ∵在▱ABCD中,∠B=60°,BC=8,
    ∴CH=4,
    ∵四边形ECGF是平行四边形,
    ∴EF∥CG,
    ∴△EOD∽△GOC,
    ∴=,
    ∵DF=DE,
    ∴,
    ∴,
    ∴,
    ∴当EO取得最小值时,EG即可取得最小值,
    当EO⊥CD时,EO取得最小值,
    ∴CH=EO,
    ∴EO=4,
    ∴GO=5,
    ∴EG的最小值是,
    故答案为:9.
    根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.
    本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.
    19.【答案】解:(1)原式=2×+2-2
    =+2-2
    =2-;

    (2)原式=•
    =1.

    【解析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质、二次根式的性质分别化简得出答案;
    (2)直接将分式的分子与分母分解因式进而化简得出答案.
    此题主要考查了分式的乘除以及实数运算,正确掌握相关运算法则是解题关键.
    20.【答案】解:解不等式x+5≤0,得x≤-5,
    解不等式≥2x+1,得:x≤-3,
    则不等式组的解集为x≤-5,
    所以不等式组的最大负整数解为-5.

    【解析】分别求出每一个不等式的解集,根据口诀:同小取小确定不等式组的解集,从而得出答案.
    本题考查的是解一元一次不等式组及其整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    21.【答案】500  108

    【解析】解:(1)本次调查的样本容量是150÷30%=500,
    扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,
    故答案为:500,108;
    (2)B等级的人数为:500×40%=200,
    补全的条形统计图如右图所示;
    (3)2000×=200(人),
    答:该校需要培训的学生人有200人.
    (1)根据A等级的人数和所占的百分比,可以求得样本容量,然后即可计算出扇形统计图中表示A等级的扇形圆心角的度数;
    (2)根据(1)中的结果,可以计算出B等级的人数,从而可以将条形统计图补充完整;
    (3)根据条形统计图中的数据,可以计算出该校需要培训的学生人数.
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    22.【答案】

    【解析】解:(1)小明从A测温通道通过的概率是,
    故答案为:;
    (2)列表格如下:

    A
    B
    C
    A
    A,A
    B,A
    C,A
    B
    A,B
    B,B
    C,B
    C
    A,C
    B,C
    C,C
    由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,
    所以小明和小丽从同一个测温通道通过的概率为=.
    (1)直接利用概率公式求解可得答案;
    (2)先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.
    本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
    23.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,
    依题意,得:-=40,
    解得:x=40,
    经检验,x=40是原方程的解,且符合题意,
    ∴(1+50%)x=60,=80,=120.
    答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.

    【解析】设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入(1+50%)x,,中即可得出结论.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    24.【答案】解:(1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,AO=CO,
    ∴∠FCO=∠EAO,
    又∵∠AOE=∠COF,
    ∴△AOE≌△COF(ASA),
    ∴OE=OF=,
    ∴EF=2OE=3;
    (2)四边形AECF是菱形,
    理由:∵△AOE≌△COF,
    ∴AE=CF,
    又∵AE∥CF,
    ∴四边形AECF是平行四边形,
    又∵EF⊥AC,
    ∴四边形AECF是菱形.

    【解析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=,进而得出EF的长;
    (2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.
    本题主要考查了平行四边形的性质以及菱形的判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
    25.【答案】(1)证明:连接OA、AD,如图,
    ∵CD为⊙O的直径,
    ∴∠DAC=90°,
    又∵∠ADC=∠B=60°,
    ∴∠ACD=30°,
    又∵AE=AC,OA=OD,
    ∴△ADO为等边三角形,
    ∴∠E=30°,∠ADO=∠DAO=60°,
    ∴∠PAD=30°,
    ∴∠EAD+∠DAO=90°,
    ∴OA⊥E,
    ∴AE为⊙O的切线;
    (2)解:作OF⊥AC于F,
    由(1)可知△AEO为直角三角形,且∠E=30°,
    ∴OA=2,AE=6,
    ∴阴影部分的面积为×6×2-=6-2π.
    故阴影部分的面积为6-2π.

    【解析】(1)连接OA、AD,可求得∠ACE=∠AEC=30°,可证明△AOD为等边三角形,可求得∠EAO=90°,可证明AE为⊙O的切线;
    (2)作OF⊥AC于F,结合(1)可得到OA=2,AE=6,再根据圆的面积公式和扇形面积公式即可求解.
    本题主要考查切线的判定和性质,掌握切线的证明方法是解题的关键,即有切点时连接圆心和切点证明垂直,没有切点时,作垂直证明距离等于半径.注意这类问题的常用辅助线的作法.
    26.【答案】-1  5  -11

    【解析】解:(1).
    由①-②可得:x-y=-1,
    由(①+②)可得:x+y=5.
    故答案为:-1;5.
    (2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,
    依题意,得:,
    由2×①-②可得m+n+p=6,
    ∴5m+5n+5p=5×6=30.
    答:购买5支铅笔、5块橡皮、5本日记本共需30元.
    (3)依题意,得:,
    由3×①-2×②可得:a+b+c=-11,
    即1*1=-11.
    故答案为:-11.
    (1)利用①-②可得出x-y的值,利用(①+②)可得出x+y的值;
    (2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①-②可得除m+n+p的值,再乘5即可求出结论;
    (3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①-2×②可得出a+b+c的值,即1*1的值.
    本题考查了二元一次方程组的应用以及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x-y,x+y的值;(2)(3)找准等量关系,正确列出三元一次方程组.
    27.【答案】(1)证明:∵AO=OD,
    ∴∠OAD=∠ADO,
    ∵OC平分∠BOD,
    ∴∠DOC=∠COB,
    又∵∠DOC+∠COB∠=∠OAD+∠ADO,
    ∴∠ADO=∠DOC,
    ∴CO∥AD;
    (2)解:如图1,过点E作EM∥FD交AD的延长线于点M,

    设∠DAC=α,
    ∵CO∥AD,
    ∴∠ACO=∠DAC=α,
    ∵AO=OC,
    ∴∠OAC=∠OCA=α,
    ∵OA=OD,
    ∴∠ODA=∠OAD=2α,
    ∵DE=EF,
    ∴∠DFE=∠DEF=3α,
    ∵AO=OB=OD,
    ∴∠ADB=90°,
    ∴∠DAE+∠AED=90°,
    即4α=90°,
    ∴∠ADF=2α=45°,
    ∴∠FDE=45°,
    ∴∠M=∠ADF=45°,
    ∴EM=DE=DF,
    ∵DF∥EM,
    ∴△AME∽△ADF,
    ∴;
    (3)解:如图2,

    ∵OD=OB,∠BOC=∠DOC,
    ∴△BOC≌△DOC(SAS),
    ∴BC=CD,
    设BC=CD=x,CG=m,则OG=2-m,
    ∵OB2-OG2=BC2-CG2,
    ∴4-(2-m)2=x2-m2,
    解得:m=,
    ∴OG=2-,
    ∵OD=OB,∠DOG=∠BOG,
    ∴G为BD的中点,
    又∵O为AB的中点,
    ∴AD=2OG=4-,
    ∴四边形ABCD的周长为2BC+AD+AB=2x+4-+4=-+2x+8=-+10,
    ∵-<0,
    ∴x=2时,四边形ABCD的周长有最大值为10.
    ∴BC=2,
    ∴△BCO为等边三角形,
    ∴∠BOC=60°,
    ∵OC∥AD,
    ∴∠DAC=∠COB=60°,
    ∴∠ADF=∠DOC=60°,∠DAE=30°,
    ∴∠AFD=90°,
    ∴,DF=DA,
    ∴.

    【解析】(1)由等腰三角形的性质及角平分线的定义证得∠ADO=∠DOC,则可得出结论;
    (2)过点E作EM∥FD交AD的延长线于点M,证得∠M=∠ADF=45°,由直角三角形的性质得出EM=DE=DF,证明△AME∽△ADF,得出;
    (3)设BC=CD=x,CG=m,则OG=2-m,由勾股定理得出4-(2-m)2=x2-m2,解得:m=,可用x表示四边形ABCD的周长,根据二次函数的性质可求出x=2时,四边形ABCD有最大值,得出∠ADF=∠DOC=60°,∠DAE=30°,由直角三角形的性质可得出答案.
    本题是四边形综合题,考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,等腰直角三角形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练运用这些图形的性质是解题的关键.
    28.【答案】解:(1)①当n=1时,B(5,1),
    设线段AB所在直线的函数表达式为y=kx+b,
    把A(1,2)和B(5,1)代入得:,
    解得:,
    则线段AB所在直线的函数表达式为y=-x+;
    ②当n=1时,完全同意小明的说法,理由为:
    若反比例函数经过点A,把A(1,2)代入反比例解析式得:k=2;
    若反比例函数经过点B,把B(5,1)代入反比例解析式得:k=5,
    ∴2≤k≤5,
    则点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,最小值为2,在点B位置时k值最大,最大值为5;
    (2)若小明的说法完全正确,则有5n>2,
    解得:n>.

    【解析】(1)①把n=1代入确定出B的坐标,利用待定系数法求出线段AB所在直线的解析式即可;
    ②若n=1,完全同意小明的说法,求出正确k的最大值与最小值即可;
    (2)若小明的说法完全正确,把A与B坐标代入反比例解析式,并列出不等式,求出解集即可确定出n的范围.
    此题属于反比例函数的综合题,涉及的知识有:待定系数法求函数解析式,反比例函数的性质,熟练掌握待定系数法是解本题的关键.

    相关试卷

    2022年江苏省扬州市中考数学试卷: 这是一份2022年江苏省扬州市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省扬州市中考数学试卷: 这是一份2023年江苏省扬州市中考数学试卷,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021年江苏省扬州市中考数学试卷: 这是一份2021年江苏省扬州市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map