2020年江苏省中考数学分类汇编专题14 数据收集、整理与分析
展开
2020年江苏省中考数学分类汇编专题14 数据收集、整理与分析
一、单选题(共9题;共18分)
1.(2020·淮安)一组数据9、10、10、11、8的众数是( )
A. 10 B. 9 C. 11 D. 8
2.(2020·宿迁)已知一组数据5,4,4,6,则这组数据的众数是( )
A. 4 B. 5 C. 6 D. 8
3.(2020·南通)一组数据2,4,6,x,3,9的众数是3,则这组数据的中位数是( )
A. 3 B. 3.5 C. 4 D. 4.5
4.(2020·无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是( )
A. 24,25 B. 24,24 C. 25,24 D. 25,25
5.(2020·徐州)小红连续 天的体温数据如下(单位相 ): , , , , .关于这组数据下列说法正确的是( )
A. 中位数是 B. 众数是 C. 平均数是 D. 极差是
6.(2020·连云港)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( ).
A. 中位数 B. 众数 C. 平均数 D. 方差
7.(2020·扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:
调查问卷 ________年________月________日
你平时最喜欢的一种体育运动项目是( )(单选)
A. B. C. D.其他运动项目
准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )
A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤
8.(2020·苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位: ):
日走时误差
0
1
2
3
只数
3
4
2
1
则这10只手表的平均日走时误差(单位:s)是( )
A. 0 B. 0.6 C. 0.8 D. 1.1
9.(2020·南京)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据, 年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是( )
A. 2019年末,农村贫困人口比上年末减少551万人
B. 2012年末至2019年末,农村贫困人口累计减少超过9000万人
C. 2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上
D. 为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务
二、填空题(共3题;共3分)
10.(2020·淮安)已知一组数据1、3, 、10的平均数为5,则 ________.
11.(2020·镇江)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为________.
12.(2020·泰州)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是________.
三、解答题(共12题;共122分)
13.(2020·徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如下尚不完整的统计图表:
市民每天的阅读时间统计表
类别
阅读时间
频数
450
400
50
市民每天的类别阅读时间扇形统计图
根据以上信息解答下列问题:
(1)该调查的样本容量为________, ________;
(2)在扇形统计图中,“ ”对应扇形的圆心角等于________ ;
(3)将每天阅读时间不低于 的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.
14.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
15.(2020·泰州) 2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表如下:
2020年5月29日 6月3日骑乘人员头盔佩戴率折线统计图
2020年6月2日骑乘人员头盔佩戴情况统计表
(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为 .你是否同意他的观点?请说明理由;
(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?
(3)求统计表中 的值.
16.(2020·宿迁)某校计划成立下列学生社团.
社团名称
文学社
动漫创作社
合唱团
生物实验小组
英语俱乐部
社团代号
A
B
C
D
E
为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).
(1)该校此次共抽查了________名学生;
(2)请补全条形统计图(画图后标注相应的数据);
(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?
17.(2020·南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.
第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.
两个小组的调查结果如图的图表所示:
第二小组统计表
等级
人数
百分比
A
17
18.9%
B
38
42.2%
C
28
31.1%
D
7
7.8%
合计
90
100%
若该校共有1000名学生,试根据以上信息解答下列问题:
(1)第________小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约________人;
(2)对这两个小组的调查统计方法各提一条改进建议.
18.(2020·扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量是________,扇形统计图中表示A等级的扇形圆心角为________ ;
(2)补全条形统计图;
(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
19.(2020·无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)
年份
2014年
2015年
2016年
2017年
2018年
2019年
收入
3
8
9
a
14
18
支出
1
4
5
6
c
6
存款余额
2
6
10
15
b
34
(1)表格中 ________;
(2)请把下面的条形统计图补充完整:(画图后标注相应的数据)
(3)请问小李在哪一年的支出最多?支出了多少万元?
20.(2020·苏州)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.
(1)学校设计了以下三种抽样调查方案:
方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;
方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;
方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.
其中抽取的样本具有代表性的方案是________.(填“方案一”、“方案二”或“方案三”)
(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):
样本容量
平均分
及格率
优秀率
最高分
最低分
100
93.5
100
80
分数段统计(学生成绩记为 )
分数段
频数
0
5
25
30
40
请结合表中信息解答下列问题:
①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;
②估计该校1200名学生中达到“优秀”的学生总人数.
21.(2020·南京)为了了解某地居民的用电量情况,随机抽取了该地200户居民六月份的用电量(单位: )进行调查,整理样本数据得到下面的频数分布表:
组别
用电量分组
频数
1
50
2
100
3
34
4
11
5
1
6
1
7
2
8
1
根据抽样调查的结果,回答下列问题:
(1)该地这200户居民六月份的用电量的中位数落在第________组内.
(2)估计该地1万户居民六月份的用电量低于 的大约有多少户.
22.(2020·连云港)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.
测试成绩统计表
等级
频数(人数)
频率
优秀
30
良好
0.45
合格
24
0.20
不合格
12
0.10
合计
1
根据统计图表提供的信息,解答下列问题:
(1)表中 ________, ________, ________;
(2)补全条形统计图;
(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?
23.(2020·淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如下尚不完整的统计图.
请解答下列问题:
(1)本次问卷共随机调查了________名学生,扇形统计图中C选项对应的圆心角为________度;
(2)请补全条形统计图;
(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?
24.(2020·常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.
(1)本次抽样调查的样本容量是________;
(2)补全条形统计图;
(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.
答案解析部分
一、单选题
1.【解析】【解答】在这组数据中出现最多的数是10,
∴众数为10,
故答案为:A.
【分析】众数是一组数据中出现次数最多的数,代表数据的一般水平。
2.【解析】【解答】解:∵一组数据5,4,4,6,
∴这组数据的众数是4,
故答案为:A.
【分析】一组数据中出现次数最多的数据,就是这组数据的众数,根据定义即可得出答案.
3.【解析】【解答】解:∵这组数据2,4,6,x,3,9的众数是3,
∴x=3,
从小到大排列此数据为:2,3,3,4,6,9,
处于中间位置的两个数是3,4,
∴这组数据的中位数是(3+4)÷2=3.5.
故答案为:B.
【分析】根据众数求出 的值,将这组数据按从小到大排列,找出排最中间位置的两个数的平均数即可.
4.【解析】【解答】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;
把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25;
故答案为:A.
【分析】根据平均数的计算公式和中位数的定义分别进行解答即可.
5.【解析】【解答】解:A.将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,
则中位数为36.3°C ,故此选项错误
B.36.2出现了两次,故众数是36.2 ,故此选项正确;
C.平均数为 ( °C ),故此选项错误;
D.极差为36.6-36.2=0.4( °C ),故此选项错误,
故答案为:B.
【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.
6.【解析】【解答】根据题意,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分,
7个有效评分与5个原始评分相比,最中间的一个数不变,即中位数不变.
故答案为::A
【分析】根据题意,由数据的数字特征的定义,分析可得答案.
7.【解析】【解答】解:∵①室外体育运动,包含了②篮球和③足球,
⑤球类运动,包含了②篮球和③足球,
∴只有选择②③④,调查问卷的选项之间才没有交叉重合,
故答案为:C.
【分析】在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中找到三个互不包含,互不交叉的项目即可.
8.【解析】【解答】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)
故答案为:D.
【分析】根据加权平均数的概念,列出算式,即可求解.
9.【解析】【解答】A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;
B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;
C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;
D、根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;
故答案为:A.
【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;
用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;
根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;
根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.
二、填空题
10.【解析】【解答】解:依题意有 ,
解得 .
故答案为:6.
【分析】根据平均数的计算方法,列出方程然后计算即可.
11.【解析】【解答】解:从小到大排列的五个数x,3,6,8,12的中位数是6,
∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,
∴加入的一个数是6,
∵这六个数的平均数与原来五个数的平均数相等,
∴
解得x=1.
故答案为:1.
【分析】原来五个数的中位数是6,如果再加入一个数,变成了偶数个数,则中位数是中间两位数的平均数,由此可知加入的一个数是6,再根据平均数的公式得到关于x的方程,解方程即可求解.
12.【解析】【解答】解:由中位数概念知道这个数据位于中间位置,共50个数据,根据频率直方图的数据可知,中位数位于第四组,即这50名学生视力的中位数所在范围是4.65-4.95.
故答案为:4.65-4.95.
【分析】根据频率直方图的数据和中位数概念可知,在这50个数据的中位数位于第四组,据此求解即可.
三、解答题
13.【解析】【解答】(1)该调查的样本容量为450÷45%=1000;
C类别的频数为1000-450-400-50=100;
故答案为:1000;100;
( 2 )“ ”对应扇形 的 圆心角等于400÷1000×360°=144°
【分析】(1)根据A类别的频数与占比即可求出调查的样本容量,再求出C类别的频数即可;(2)求出B类别的占比即可得到对应扇形的圆心角;(3)利用样本的频率即可估计全体“阅读爱好者”的市民人数.
14.【解析】【分析】(1)根据频率= 求解可得;(2)先根据频数的和是50求出m的值,再用总人数乘以样本中平均每天的睡眠时间在7≤t<8这个范围内的人数所占比例即可.
15.【解析】【分析】(1)根据本次调查是从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,可知数据代表比较单一,没有普遍性,据此判断即可;(2)由折线统计图可知,骑电动自行车骑乘人员戴头盔率比摩托车骑乘人员头盔佩戴率要低很多,据此判断即可;(3)由折线统计图可知,骑电动自行车骑乘人员不戴头盔率为55%,则有 ,据此求解即可.
16.【解析】【解答】解:(1)该校此次共抽查了12÷24%=50名学生,
故答案为:50;
【分析】(1)根据喜爱D的人数和所占的百分比,可以求得本次调查的学生人数;
(2)根据(1)中的结果和条形统计图中的数据,可以计算出喜爱C的人数,然后即可将条形统计图补充完整;
(3)根据统计图中的数据,可以计算出该校有多少名学生喜爱英语俱乐部.
17.【解析】【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;
1000×(1﹣7.8%)=1000×0.922=922(人),
故答案为:二,922;
【分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(1-7.8%)就是“合格及以上”的人数;
(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.
18.【解析】【解答】解:(1)150÷30%=500(人),
360°×30%=108°,
故答案为:500;108;
【分析】(1)根据条形统计图中A项为150人,扇形统计图中A项为30%,计算出样本容量;扇形统计图中计算360°的30%即360°×30%即可;(2)根据扇形统计图中B选项占40%,求出条形统计图中B选项的人数,补全条形统计图即可;(3)抽取的样本中“不太熟练或不熟练”的同学所占的百分比为 ×100%,由此估计2000名学生所占的百分比也为 ×100%,进而求出该校需要培训的学生人数.
19.【解析】【解答】解:(1)10+a−6=15,
解得a=11,
故答案为11;
【分析】(1)本年度收入减去支出后的余额加上上一年存入银行的余额作为本年的余额,则可建立一元一次方程10+a−6=15,然后解方程即可;(2)根据题意得 ,再解方程组得到2018年的存款余额,然后补全条形统计图;(3)利用(2)中c的值进行判断.
20.【解析】【解答】解:要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.
答案是:方案三;
【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.
21.【解析】【解答】解:(1)将200个数据按大小顺序排列最中间两个数即第100和101个数,它们的平均数即为中位数,这两个数都落在第2组,
故答案为:2;
【分析】(1)将200个数据按大小顺序排列最中间两个数的平均数即为中位数,进而可解决问题;(2)求出用电量低于 的户数的百分比,根据总户数求出答案..
22.【解析】【解答】解:(1)样本的总频数(人数) (人),
其中:“优秀”等次的频率 ,
“良好”等次的频数 (人).
故答案为:0.25,54,120;
【分析】(1)依据频率= ,先用不合格的人数除以不合格的频率即可得到总频数(人数) ,再依次求出 、 ;(2)根据(1)良好人数即可补全条形统计图;(3)全校2400名乘以“优秀”和“良好”两个等级的频率和即可得到结论.
23.【解析】【解答】解:(1)本次问卷共随机调查的学生人数为 (名)
C选项学生人数的占比为
则
故答案为:60,108;
【分析】(1)先根据B选项的条形统计图和扇形统计图的信息可得调查的总人数,再求出C选项学生人数的占比,然后乘以 即可得;
(2)先根据(1)的结论,求出A选项学生的人数,再补全条形统计图即可;
(3)先求出选择“不了解”的学生的占比,再乘以1200即可得.
24.【解析】【解答】解:(1)本次抽样调查的样本容量是25÷25%=100;
故答案为:100;
【分析】(1)用条形统计图中最喜爱打排球的人数除以扇形统计图中最喜爱打排球的人数所占百分比即可求出本次抽样调查的样本容量;
(2)用总人数乘以最喜爱打乒乓球的人数所占百分比即可求出最喜爱打乒乓球的人数,用总人数减去最喜爱其它三项运动的人数即得最喜爱踢足球的人数,进而可补全条形统计图;
(3)用最喜爱打篮球的人数除以总人数再乘以2000即可求出结果.
专题26 数据的收集整理、描述与分析(60题)-备战2024年数学中考之真题分项汇编(全国通用): 这是一份专题26 数据的收集整理、描述与分析(60题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题26数据的收集整理描述与分析共60题原卷版docx、专题26数据的收集整理描述与分析共60题解析版docx等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。
专题26 数据的收集整理、描述与分析(60题)-2023年中考数学真题分项汇编(全国通用): 这是一份专题26 数据的收集整理、描述与分析(60题)-2023年中考数学真题分项汇编(全国通用),文件包含专题26数据的收集整理描述与分析共60题原卷版docx、专题26数据的收集整理描述与分析共60题解析版docx等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。
2023年全国中考数学真题分项汇编-数据的收集整理、描述与分析(含答案): 这是一份2023年全国中考数学真题分项汇编-数据的收集整理、描述与分析(含答案),共35页。试卷主要包含了5 分 240 人,2° 9600 人,3 分,3,X乙 =8,0 这一组,等内容,欢迎下载使用。