|试卷下载
搜索
    上传资料 赚现金
    2022版新教材高考数学一轮复习17导数与函数的极值最值训练含解析新人教B版
    立即下载
    加入资料篮
    2022版新教材高考数学一轮复习17导数与函数的极值最值训练含解析新人教B版01
    2022版新教材高考数学一轮复习17导数与函数的极值最值训练含解析新人教B版02
    2022版新教材高考数学一轮复习17导数与函数的极值最值训练含解析新人教B版03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022版新教材高考数学一轮复习17导数与函数的极值最值训练含解析新人教B版

    展开
    这是一份2022版新教材高考数学一轮复习17导数与函数的极值最值训练含解析新人教B版,共7页。试卷主要包含了已知函数f=excs x-x.等内容,欢迎下载使用。

    十七 导数与函数的极值、最值

    (建议用时:45分钟)

    A组 全考点巩固练

    1.设aR,若函数yexax有大于零的极值点,则(  )

    Aa<1   Ba>1

    Ca>   Da<

    A 解析:因为yexax,所以yexa.

    又函数yexax有大于零的极值点,

    所以方程yexa0有大于零的解,

    x>0时,-ex<1,所以a=-ex<1.

    2.若函数f(x)x3bx2cxd的大致图像如图所示,则xx等于(  )

    A.   B. 

    C.   D.

    C 解析:因为函数f(x)的图像过原点,所以d0.f(1)0f(2)0,即解得所以函数f(x)x3x22x.所以f(x)3x22x2.由题意知x1x2是函数的极值点,所以x1x2f(x)0的两个根,所以x1x2x1x2=-,所以xx(x1x2)22x1x2.

    3.已知函数f(x)2ef(e)ln x(e是自然对数的底数),则f(x)的极大值为

    (  )

    A2e1   B.-

    C1   D2ln 2

    D 解析:由题意知f(x).

    所以f(e)2f(e),则f(e).

    因此f(x).f(x)0,得x2e.

    所以f(x)(0,2e)上单调递增,在(2e,+)上单调递减.

    所以f(x)x2e处取极大值f(2e)2ln(2e)22ln 2.

    4.已知x是函数f(x)xln(ax)1的极值点,则a(  )

    A   B1 

    C   D2

    B 解析:由函数f(x)xln(ax)1,可得f(x)ln(ax)1.x是函数f(x)的极值点,可得ln10,解得a1.经验证,a1时,x是函数f(x)的极值点.故选B.

    5(多选题)(2020·山东百师联盟测试五)常数a0,下列有关方程x3x2xa0的根的说法正确的是(  )

    A.可以有三个负根

    B.可以有两个负根和一个正根

    C.可以有两个正根和一个负根

    D.可以有三个正根

    BC 解析:方程x3x2xa0可化为x3x2xa.令函数f(x)x3x2x,则f(x)3x22x1(3x1)(x1).当x<1x>时,f(x)>0.当-1<x<时,f(x)<0.f(x)(,-1)上单调递增,在上单调递减,且f(1)>0f <0.作出f(x)的图像如图,从而方程x3x2xa0可以有两个正根和一个负根,也可以有两个负根和一个正根,但不会有三个负根,也不会有三个正根.故选BC.

    6.函数f(x)x33x22在区间[1,1]上的最大值是________

    2 解析:由题意知f(x)3x26x3x(x2)

    f(x)0x0x2()

    当-1<x<0时,f(x)>0

    0<x<1时,f(x)<0

    所以当x0时,函数取得极大值,即最大值.

    所以f(x)的最大值为f(0)2.

    7.已知函数f(x)=-x3ax24x2处取得极值.若m[1,1],则f(m)的最小值是________

    4 解析:由题意知f(x)=-3x22ax.f(x)x2处取得极值,知f(2)0

    3×42a×20a3.

    由此可得f(x)=-x33x24.

    f(x)=-3x26x=-3(x2),由此可得f(x)(1,0)上单调递减,在(0,1)上单调递增,

    所以当m[1,1]时,f(m)minf(0)=-4.

    8.已知f(x)x33ax2bxa2x=-1时有极值0,则ab________.

    7 解析:由题意得f(x)3x26axb,则

    解得

    经检验当a1b3时,函数f(x)x=-1处无法取得极值,

    a2b9满足题意,

    ab=-7.

    9.已知函数f(x)ax2bln x在点A(1f(1))处的切线方程为y1.

    (1)求实数ab的值;

    (2)求函数f(x)的极值.

    解:(1)f(x)的定义域是(0,+)

    所以f(x)2ax

    f(1)a1.所以f(1)2ab0.

    a1代入2ab0,解得b2.a1b2.

    (2)(1)f(x)x22ln x(x>0)

    f(x)2x.

    f(x)>0,解得x>1

    f(x)<0,解得0<x<1.

    所以f(x)(0,1)上单调递减,在(1,+)上单调递增.

    所以f(x)极小值f(1)1,无极大值.

    10.已知函数f(x)excos xx.

    (1)求曲线yf(x)在点(0f(0))处的切线方程;

    (2)求函数f(x)在区间上的最大值和最小值.

    解:(1)因为f(x)excos xx,所以f(0)1

    f(x)ex(cos xsin x)1,所以f(0)0

    所以yf(x)(0f(0))处的切线方程为y1.

    (2)(1)f(x)ex(cos xsin x)1

    g(x)f(x),则g(x)=-2exsin x0上恒成立,且仅在x0处等号成立,

    所以g(x)上单调递减,

    所以g(x)g(0)0,所以f(x)0且仅在x0处等号成立,

    所以f(x)上单调递减,

    所以f(x)maxf(0)1f(x)minf =-.

     

    B组 新高考培优练

    11.若函数yf(x)存在n1(nN*)个极值点,则称yf(x)n折函数,例如f(x)x22折函数.已知函数f(x)(x1)exx(x2)2,则f(x)(  )

    A2折函数   B3折函数

    C4折函数   D5折函数

    C 解析:由题意知f(x)(x2)ex(x2)·(3x2)(x2)(ex3x2)

    f(x)0,得x=-2ex3x2.

    易知x=-2f(x)的一个极值点,

    ex3x2,结合函数图像(图略)

    yexy3x2有两个交点.

    e23×(2)2=-4

    所以函数yf(x)3个极值点,则f(x)4折函数.

    12(多选题)(2020·海南调研)已知函数f(x)xsin xxcos x的定义域为[2π),则(  )

    Af(x)为奇函数

    Bf(x)[0π)上单调递增

    Cf(x)恰有4个极大值点

    Df(x)有且仅有4个极值点

    BD 解析:对于选项A,因为f(x)的定义域为[2π),不关于原点对称,所以f(x)为非奇非偶函数,故A错误.对于选项Bf(x)1cos x(cos xxsin x)1xsin x.当x[0π)时,f(x)>0,则f(x)[0π)上单调递增,故B正确.对于选项CDf(0)0,令f(x)0,得sin x=-.在同一坐标系内分别作出ysin xy=-在区间[2π)上的图像,如图.由图可知,这两个函数的图像在区间[2π)上共有4个公共点,且两图像在这些公共点处都不相切,故f(x)在区间[2π)上的极值点的个数为4,且f(x)只有2个极大值点,故C错误,D正确.故选BD.

    13.若函数f(x)x3x2在区间(aa5)上存在最小值,则实数a的取值范围是________

    [3,0) 解析:由题意,得f(x)x22xx(x2)

    f(x)(,-2)(0,+)上单调递增,在(2,0)上单调递减.故f(0)=-f(x)的极小值.作出其图像如图所示.

    x3x2=-得,x0x=-3.结合图像可知解得a[3,0)

    14.已知函数f(x)ex(exa)a2x.

    (1)讨论f(x)的单调性;

    (2)f(x)0,求a的取值范围.

    解:(1)函数f(x)的定义域为(,+)

    f(x)2e2xaexa2(2exa)(exa)

    a0,则f(x)e2x,在(,+)上单调递增.

    a>0,由f(x)0xln a.

    x(ln a)时,f(x)<0

    x(ln a,+)时,f(x)>0.

    f(x)(ln a)上单调递减,

    (ln a,+)上单调递增.

    a<0,由f(x)0xln.

    x时,f(x)<0

    x时,f(x)>0.

    f(x)上单调递减,在上单调递增.

    (2)a0,则f(x)e2x,所以f(x)0.

    a>0,则由(1)得,当xln a时,f(x)取得最小值,最小值为f(ln a)=-a2ln a.从而当且仅当-a2ln a0,即a1时,f(x)0.0<a1.

    a<0,则由(1)得,当xln时,f(x)取得最小值,最小值为fa2.

    从而当且仅当a20,即a2e时,f(x)0.故-2ea<0.

    综上,a的取值范围是[2e1]

    15.已知函数f(x)ln x.

    (1)f(x)的单调区间;

    (2)求函数f(x)上的最大值和最小值.

    解:(1)f(x)ln x1ln xf(x)的定义域为(0,+)

    所以f(x).

    f(x)0,得0x1;令f(x)0,得x1.

    所以f(x)ln x(0,1)上单调递增,在(1,+)上单调递减.

    (2)(1)f(x)上单调递增,在[1e]上单调递减,

    所以f(x)上的最大值为f(1)11ln 10.

    f1eln 2ef(e)1ln e=-

    f f(e)

    所以f(x)上的最小值为f 2e.

    综上,f(x)上的最大值为0,最小值为2e.

     

     

    相关试卷

    人教B版高考数学一轮总复习17导数与函数的极值、最值练习含答案: 这是一份人教B版高考数学一轮总复习17导数与函数的极值、最值练习含答案,共8页。

    2023届高考数学一轮复习作业利用导数解决函数的极值最值新人教B版(答案有详细解析): 这是一份2023届高考数学一轮复习作业利用导数解决函数的极值最值新人教B版(答案有详细解析),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年新教材高考数学一轮复习课时规范练17利用导数研究函数的极值与最值含解析新人教B版: 这是一份2023年新教材高考数学一轮复习课时规范练17利用导数研究函数的极值与最值含解析新人教B版,共8页。试卷主要包含了函数f=·ex的最小值为,已知函数f=3xex,则f,已知函数f=ex,g=2x,已知函数f=x-1+aex等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map