|试卷下载
搜索
    上传资料 赚现金
    2021年陕西省西安市中考数学一模试题(word版 含答案)
    立即下载
    加入资料篮
    2021年陕西省西安市中考数学一模试题(word版 含答案)01
    2021年陕西省西安市中考数学一模试题(word版 含答案)02
    2021年陕西省西安市中考数学一模试题(word版 含答案)03
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年陕西省西安市中考数学一模试题(word版 含答案)

    展开
    这是一份2021年陕西省西安市中考数学一模试题(word版 含答案),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021年陕西省西安市中考数学一模试题
    学校:___________姓名:___________班级:___________考号:___________


    一、单选题
    1.的倒数是(  )
    A. B.  C. D.2021
    2.如图所示的几何体,其俯视图是( )

    A. B. C. D.
    3.截止北京时间10月5日22点前,全球新冠肺炎累计确诊病例已超过35000000例,这个数用科学记数法表示为(  )
    A.0.35×108 B.3.5×107 C.3.5×108 D.0.35×107
    4.如图,将一个直角尺的顶点放在尺子的一边,若∠1=24°,那么∠2的度数是(  )

    A.24° B.56° C.66° D.76°
    5.下列运算正确的是(  )
    A.3a2•2a3=6a5 B.(﹣a2)3=a6
    C.(a﹣b)2=a2﹣b2 D.x2+x2=x4
    6.在平面直角坐标系中,若一个正比例函数的图象经过A(m,2),点B(5,n)两点,则m,n一定满足的关系式为(  )
    A.m﹣n=3 B. C. D.mn=10
    7.如图,在等边△ABC中,作点C关于直线AB的对称点P,过点P作PQ⊥BC,交CB的延长线于点Q,BQ=5,则AC的长为(  )

    A.5 B.5 C.10 D.15
    8.如图,在矩形ABCD中,AB=4,FG=,AE平分∠BAD交BC于点E.点F,G分别是AD,AE的中点,则BC的长为(  )


    A.3 B.5 C.7 D.8
    9.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为(  )m.

    A.3 B.6 C.8 D.9
    10.若直线y=n截抛物线y=x2+bx+c所得线段AB=4,且该抛物线与x轴只有一个交点,则n的值为(  )
    A.﹣1 B.2 C.25 D.4

    二、填空题
    11.把多项式分解因式的结果是_____________.
    12.如图,以正五边形ABCDE的边CD为边作正方形CDFH,使点F,H在其内部,连接FE,则∠DFE=_____.

    13.如图,以平行四边形ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点C的坐标是(2,0),tan∠AOC=2,过点A的反比例函数的图象过BC边的中点D,则k的值是_____.

    14.已知矩形ABCD中有一点P,满足PA=1,PB=2,PC=3,则PD=_____.


    三、解答题
    15.计算:﹣2sin60°.
    16.化简:.
    17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作直线AD交BC于点D,使△ABD与△CAD相似(保留作图痕迹,不写做法).

    18.如图,已知正方形ABCD,点E在边BC上,点F在CD的延长线上,且DF=BE,求证:AF⊥AE.

    19.某中学数学兴趣小组为了了解参加数学学科节学生的年龄情况,随机抽取了其中部分学生的年龄,经过数据整理,绘制出如下不完整的统计图,依据相关信息解答以下问题:
    (1)写出被抽取的学生人数   ,并补全条形统计图.
    (2)被抽取的学生的年龄的众数是   岁,中位数是   岁.
    (3)若共有600名学生参加了本次数学学科节活动,请估计活动中年龄在15岁及以上的学生人数.

    20.如图,AB,CD为两栋建筑物,从建物CD顶端C处测得建筑物AB顶端A的俯角为22°,BM为此时阳光下建筑物AB在地面上的影子,且获知此时刻长为1米的标杆影长为1.1米,建筑物AB顶端A在地面上的影子M与墙角D的距离为10m(B、M、D在同一直线上),建筑物CD的高28米,求建筑物AB的高度;(结果保留一位小数)参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)

    21.早晨六点,小张开车去距出发地路程为150km的A地,车匀速行驶,在行驶过程中,前方发生交通事故,被堵了一些时间,事故处理后,小张提高速度,继续匀速前进;整个过程中小张出发后行驶的路程y(km)与其行驶时间x(h)的函数关系如图所示,根据图象回答下列问题:
    (1)求小张提高速度后y与x的函数表达式;
    (2)小张能否在早晨九点之前赶到A地?请说明理由.

    22.周天,苗苗准备了5盒外包装完全相同的橡皮泥,准备和好朋友一起做手工,其中2盒红色,2盒黄色,1盒绿色.
    (1)若苗苗随机打开一盒橡皮泥,恰巧是红色的概率是   ;
    (2)若苗苗同时打开两盒橡皮泥,请你计算两盒颜色恰好相同的概率(请用画树状图或列表的方法求解)
    23.已知二次函数y=x2+bx+c(a≠0)自变量x的值和它对应的函数值y如表所示:
    x
    ……
    0
    1
    2
    3
    4
    ……
    y
    ……
    3
    0
    ﹣1
    0
    m
    ……
    (1)请写出关于该二次函数图象的相关信息:
    抛物线解析式为   ;抛物线开口向   (填“上”或“下”);顶点坐标为   ;m的值为   .
    (2)设该二次函数图象与x轴的左交点为B,它的顶点为A,该图象上点C的横坐标为4,求△ABC的面积.
    24.如图,已知直线y=x﹣4与坐标轴分别交于点B、点C,二次函数y=﹣x2+2x的图像经过点C.
    (1)求直线与抛物线的另一个交点A的坐标及线段AB的长;
    (2)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.

    25.(1)如图1,在四边形ABCD中,已知ADBC,点M是CD的中点,连接AM并延长交BC的延长线于点E,若=10,那么=   .
    (2)如图2,已知,锐角∠AOB内有一点M,过点M作直线l分别交OA,OB于点P、Q,将直线l绕点M旋转时,发现:当点M恰好是PQ中点时,最小,请证明这个结论.
    (3)如图3,已知在直角坐标系中,OA是第一象限的角分线,∠MOx=30°,且OM=3,过点M作直线l交OA于点P,交x轴正半轴于点Q,求的最小值及此时直线l的表达式.



    参考答案
    1.D
    【分析】
    直接利用倒数的定义分析得出答案.
    【详解】
    解:的倒数为:2021.
    故选:D.
    【点睛】
    此题主要考查了倒数,正确把握倒数定义是解题关键.
    2.A
    【分析】
    根据俯视图的定义即可求解.
    【详解】
    由图形可知,这个几何体的俯视图为

    故选A.
    【点睛】
    此题主要考查俯视图的判断,解题的关键是熟知俯视图的定义.
    3.B
    【分析】
    根据科学计数法的要求先确定a的值,再确定10的指数.
    【详解】
    因为35000000=3.5×107,
    故选:B.
    【点睛】
    本题考查了绝对值大于1的数的科学计数法,记住科学计数法中a的取值范围,避免出错.
    4.C
    【分析】
    先根据两角互余的性质求出的度数,再由平行线的性质即可得出结论.
    【详解】
    解:如图:



    直尺的两边互相平行

    故选C.
    【点睛】
    本题考查了平行线的性质,熟练掌握两直线平行,同位角相等是解题的关键.
    5.A
    【分析】
    根据单项式乘单项式、幂的乘方、完全平方公式及合并同类项逐一计算可得.
    【详解】
    解:A.,此选项正确;
    B.,此选项错误;
    C. ,此选项错误;
    D. ,此选项错误.
    故选A.
    【点睛】
    本题主要考查单项式乘单项式、幂的乘方、完全平方公式及合并同类项,熟练掌握运算法则是解题的关键.
    6.D
    【分析】
    设正比例函数解析式为y=kx(k≠0),再把A、B点的坐标代入得到mk=2,5k=n,然后消去k得到m、n的关系式.
    【详解】
    解:设正比例函数解析式为y=kx(k≠0),
    把A(m,2),点B(5,n)代入得mk=2,5k=n,
    可得,, 代入mk=2得,m•=2,
    所以mn=10.
    故选:D.
    【点睛】
    本题考查了待定系数法求正比例函数解析式:先设出正比例函数的解析式为y=kx,然后把一组对应值代入求出k即可.
    7.C
    【分析】
    设PC与AB的交点为D,在等边△ABC中,AB=AC,∠A=∠ABC=∠ACB=60°,由点C关于直线AB的对称点P,可得CD平分∠ACB,由PQ⊥BC,可得∠Q=90°,设BC=x,利用三角函数可求CD= ,PC=,再利用三角函数列方程QC=PCcos30°即5+x=,解之即可.
    【详解】
    解:设PC与AB的交点为D,
    在等边△ABC中,AB=AC,∠A=∠ABC=∠ACB=60°,
    ∵点C关于直线AB的对称点P,
    ∴PC⊥AB,PD=CD,
    ∵CD⊥AB,△ABC为等边三角形,
    ∴CD平分∠ACB,
    ∴∠DCB=
    ∵PQ⊥BC,
    ∴∠Q=90°,
    设BC=x,
    ∴CD=BCcos30°=,
    ∴PC=2CD=,
    ∴QC=PCcos30°即5+x=,
    解得:x=10.
    故选择:C.

    【点睛】
    本题考查等边三角形选择,轴对称性质,锐角三角函数,掌握等边三角形选择,轴对称性质,锐角三角函数,利用锐角三角函数构造方程是解题关键.
    8.C
    【分析】
    连接DE,由三角形中位线定理求出DE,再根据勾股定理求出CE,角平分线的性质得出△ABE是等腰有直角三角形,求出BE,从而求出BC.
    【详解】
    解:连接DE,

    ∵FG=且F、G分别为AD、AE中点,
    ∴DE=2FG=5,
    ∵四边形ABCD为矩形,
    ∴CD=AB=4,
    在△CDE中,CE==3,
    ∵AE平分∠BAD,四边形ABCD为矩形,
    ∴∠BAD=∠ABE=90°,
    ∴∠BAE=∠BAD=45°,
    在△ABE中,∠AEB=90°﹣∠AEB=45°,
    ∴∠BAE=∠AEB=45°,
    △ABE为等腰直角三角形,
    ∴BE=AB=4,
    又∵CE=3,
    ∴BC=BE+CE=4+3=7.
    故选:C.
    【点睛】
    本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出DE的长度是解题的关键.
    9.B
    【分析】
    根据已知确定平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2.5代入抛物线解析式得出水面宽度,即可得出答案.
    【详解】
    解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

    抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
    设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,
    ∴抛物线解析式为y=﹣0.5x2+2,
    当水面下降2.5米,通过抛物线在图上的观察可转化为:
    当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,
    可以通过把y=﹣2.5代入抛物线解析式得出:
    ﹣2.5=﹣0.5x2+2,
    解得:x=±3,
    ∴水面宽度为3﹣(﹣3)=6(m).
    故选:B.
    【点睛】
    本题主要考查了二次函数的应用.根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题.
    10.D
    【分析】
    由抛物线与x轴只有一个交点,得出b2﹣4c=0,设A、B的交点的横坐标为x1、x2,则x1+x2=﹣b,x1x2=c﹣n,由AB=4,即可得出(x1﹣x2)2=(x1+x2)2﹣4x1x2=16,即可得出4n=16,解得n=4.
    【详解】
    解:∵抛物线与x轴只有一个交点,
    ∴b2﹣4c=0,
    设A、B的交点的横坐标为x1、x2,
    ∴x1、x2是方程x2+bx+c=n的两个根,
    ∴x1+x2=﹣b,x1x2=c﹣n,
    ∵AB=4,
    ∴|x1﹣x2|=4,
    ∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16,
    ∴(﹣b)2﹣4(c﹣n)=16,即b2﹣4c+4n=16,
    ∴4n=16,
    ∴n=4,
    故选:D.
    【点睛】
    本题考查了抛物线与x轴的交点,二次函数与方程的关系,根与系数的关系,根据题意得出(﹣b)2﹣4(c﹣n)=16,即b2﹣4c+4n=16是解题的关键.
    11.3a(x+2)(x-2)
    【分析】
    先提取公因式3a,再根据平方差公式分解即可.
    【详解】
    =3a(x+2)(x-2),
    故答案为:3a(x+2)(x-2).
    【点睛】
    此题考查因式分解的方法:提公因式法、公式法(平方差公式与完全平方公式),根据多项式的特点选择恰当的因式分解的方法是解题的关键.
    12.81°
    【分析】
    根据正多边形的性质以及内角和求解即可.
    【详解】
    由正多边形的内角和公式可得:
    正五边形ABCDE的内角和为,
    ∴,
    ∵四边形CDFH是以CD为边的正方形,
    ∴,,
    ∴为等腰三角形,
    ∴,
    故答案为:81°.
    【点睛】
    本题考查正多边形的性质,理解基本性质是解题关键.
    13.
    【分析】
    作AM⊥x轴于M,DN⊥x轴于N,设A(a,2a),解直角三角形表示出A、D的坐标,根据反比例函数图象上点的坐标特征得到k=a•2a=(2+)•a,解得a=,进而即可求得k的值.
    【详解】
    解:∵四边形ABCO是平行四边形,
    ∴OA∥BC,OA=BC,
    ∴∠DCN=∠AOC,
    作AM⊥x轴于M,DN⊥x轴于N,
    ∵tan∠AOC=2,
    ∴=2,=2,
    ∴设A(a,2a),
    ∴OM=a,AM=2a,,
    ∵D是BC的中点,,
    ∴DN=a,CN=a,
    ∵顶点C的坐标是(2,0),
    ∴ON=2+a,
    ∴D(2+,a),
    ∴a•2a=(2+)•a,
    解得a=或a=0(舍去),
    ∴k=a•2a=,
    故答案为.

    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是求出a的值.
    14.
    【分析】
    由ABCD是矩形,过P作GHBC交AB、CD于点G、H,过P作EFAB交AD、BC于点E、F,在所形成的直角三角形中,由勾股定理得出AP2+CP2=BP2+DP2,从而求出DP.
    【详解】
    解:过点P作GHBC交AB、CD于点G、H,过点P作EFAB交AD、BC于点E、F,

    设AE=BF=c,AG=DH=a,GB=HC=b,ED=FC=d
    ,,,
    PA=1,PB=2,PC=3,


    (负值已舍去)
    故答案为:.
    【点睛】
    本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.
    15.
    【分析】
    先化简二次根式、负指数、特殊角三角函数值,再进行计算即可.
    【详解】
    解:﹣2sin60°,
    =,
    =
    =.
    【点睛】
    本题考查了实数的运算,包括二次根式、负指数、三角函数等,解题关键是熟记三角函数值,准确运用相关知识进行计算.
    16.
    【分析】
    根据分式运算的顺序和法则进行计算即可.
    【详解】
    解:,
    =
    =
    =
    =.
    【点睛】
    本题考查了分式的运算,解题关键是熟练运用分式运算法则进行准确计算.
    17.答案见解析
    【分析】
    过点A作AD垂直BC于D,直线AD即为所求直线;在△ABD与△CAD中,有 再证明,从而可得△ABD∽△CAD.
    【详解】
    解:如图,

    AD即为所求直线.
    【点睛】
    此题主要考查作图法和相似三角形变换,解题的关键在于理解题意,灵活运用所学知识解决问题.
    18.见解析
    【分析】
    根据正方形的性质得到∠B=∠ADF=90°,AD=AB,求出∠ADF,根据SAS即可推出答案,再利用全等三角形的性质解答即可.
    【详解】
    证明:由正方形ABCD,得 AB=AD,∠B=∠ADF=∠BAD=90°.
    在△ABE和△ADF中,

    ∴△ABE≌△ADF(SAS).
    ∴∠BAE=∠FAD,AE=AF.
    ∴∠BAD=∠BAE+∠EAD=∠FAD+∠EAD=90°.
    即∠EAF=90°.
    ∴AF⊥AE.
    【点睛】
    本题主要考查对正方形的性质,全等三角形的性质和判定,垂直的判定等知识点的理解和掌握.关键在于利用SAS判定全等.
    19.(1)50,图见解析;(2)15岁,14岁;(3)240人
    【分析】
    (1)根据12岁的人数和所占的百分比,可以计算出本次被抽查的学生人数,然后即可计算出户14岁和16岁的人数,从而可以将条形统计图补充完整;
    (2)根据条形统计图中的数据,可以得到被抽取的学生的年龄的众数和中位数;
    (3)根据统计图中的数据,可以计算出活动中年龄在15岁及以上的学生人数.
    【详解】
    解:(1)被抽取的学生人数:6÷12%=50(人),
    故答案为:50,
    14岁的学生有:50×28%=14(人),
    16岁的学生有50﹣6﹣10﹣14﹣18=2(人),
    补全的条形统计图如图所示;
    (2)由条形统计图可知,
    被抽取的学生的年龄15岁最多,故众数是15岁,从小到大排列后,第25、26个数据都是14岁,所以中位数是14岁,
    故答案为:15,14;
    (3)600×=240(人),
    即估计活动中年龄在15岁及以上的学生有240人.

    【点睛】
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    20.16.7米
    【分析】
    过点A作AN⊥CD于点N,则四边形ABDN是矩形,设AB=x,则DN=x,根据此时刻长为1米的标杆影长为1.1米,可得AB:BM=1:1.1,所以BM=1.1x(米),可得AN=BD=BM+MD=(1.1x+10)米,CN=CD﹣DN=(28﹣x)米,根据锐角三角函数即可求出x的值.
    【详解】
    解:如图,过点A作AN⊥CD于点N,
    则四边形ABDN是矩形,

    ∴AB=DN,AN=BD,
    设AB=x,则DN=x,
    ∵此时刻长为1米的标杆影长为1.1米,
    ∴AB:BM=1:1.1,
    ∴BM=1.1x(米),
    ∴AN=BD=BM+MD=(1.1x+10)米,
    CN=CD﹣DN=(28﹣x)米,
    在Rt△ACN中,
    tan∠CAN=,
    ∴≈0.40,
    解得x≈16.7,
    ∴AB≈16.7(米).
    答:建筑物AB的高度约为16.7米.
    【点睛】
    此题考查了解直角三角形应用﹣仰角俯角问题,平行投影,熟练掌握仰角俯角是解本题的关键.
    21.(1)小张提速后y与x的函数表达式为y=60x﹣40;(2)小张不能在九点前赶到A地,理由见解答.
    【分析】
    (1)根据函数图象中的数据,可以得到小张提高速度后y与x的函数表达式;
    (2)将y=150代入(1)中的函数解析式,求出对应的x的值,然后即可得到小张能否在九点之前赶到A地.
    【详解】
    解:(1)由图可知,
    设小张提速后y与x的函数表达式为y=kx+b(k≠0),把(1.5,50),(2,80)代入得,
    ∴,
    解得:,
    即小张提速后y与x的函数表达式为y=60x﹣40;
    (2)小张不能在九点前赶到A地,
    理由:当y=150时,
    150=60x﹣40,
    解得,x=,
    ∵>9﹣6,
    ∴小张不能在九点前赶到某地.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    22.(1);(2)
    【分析】
    (1)利用概率公式求解即可.
    (2)列表得出所以等可能结果,从中找出符合条件的结果数,再根据概率公式求解即可.
    【详解】
    解:(1)若苗苗随机打开一盒橡皮泥,恰巧是红色的概率是;
    (2)列表如下:

    由表知,共有20中等可能结果,其中两盒颜色恰好相同的有4种结果,
    ∴两盒颜色恰好相同的概率为=.
    【点睛】
    本题考查了根据概率公式求概率,用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所以可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
    23.(1),上,,3;(2)3
    【分析】
    (1)根据表格中的数据和二次函数的性质,可以得到该二次函数图象的开口方向、对称轴、顶点坐标和m的值;
    (2)根据表格中的数据和题意,可以写出点B,点A,点C的坐标,再求出直线AC和x轴的交点,即可得到△ABC的面积.
    【详解】
    解:(1)由表格可知,x=1和x=3时的函数值相同,都是0,
    ∴对称轴为直线x==2,
    ∴当x=4和x=0时的函数值相等,则m=3,顶点为(2,-1),
    设抛物线解析式为,
    把(0,3)代入得,3=4a-1,
    则a=1,
    ∴抛物线解析式为,
    即该二次函数图象的开口方向向上,
    故答案为,上,(2,-1),3;
    (2)由题意可得,
    点B的坐标为(1,0),点A的坐标为(2,-1),点C的坐标为(4,3),
    设直线AC的函数解析式为y=kx+b,

    解得,
    ∴直线AC的函数解析式为y=2x-5,
    当y=0时,0=2x-5,
    解得x=2.5,
    则直线AC与x轴的交点为(2.5,0),
    故S△ABC==3.
    【点睛】
    本题考查了抛物线与x轴的交点,二次函数的性质,求一次函数解析式.解题的关键是明确题意,利用二次函数的性质解答.
    24.(1);(2)存在,或
    【分析】
    (1)由直线y=x﹣4与坐标轴分别交于点B、点C,求出点B、点C的坐标,由y=x﹣4与y=﹣x2+2x组成方程组,求得方程组的解即可求得点A的坐标,再由点A,B的坐标根据勾股定理,求出线段AB的长;
    (2)由OB=OC=4,∠BOC=90°,可得∠BCD=∠ABO=135°,若△BCD与△OAB相似,则∠BCD与∠ABO一定是对应角,点D一定在OC的延长线上,再根据相似三角形的对应边成比例列出方程,即可求出线段CD的长,从而求得点D的坐标.
    【详解】
    解:(1)∵直线y=x﹣4与坐标轴分别交于点B、点C,
    ∴B(0,-4),C(4,0),
    由,得,,
    ∴A(-2,-6),
    ∴AB=,
    (2)存在,
    ∵OB=OC=4,∠BOC=90°,
    ∴BC=,∠OBC=∠OCB=45°,
    ∴∠BCD=∠ABO=135°,
    如图1,当∠CBD=∠BOA时,△CBD∽△BOA,

    ∴,
    ∴,
    解得CD=4,
    ∴OD=4+4=8,
    ∴D(8,0),
    如图2,当∠CBD=∠BAO时,△CBD∽△BAO,

    ∴,
    ∴,
    解得DC=8,
    ∴OD=4+8=12,
    ∴D(12,0),
    综上所述,点D的坐标为或.
    【点睛】
    本题考查了二次函数图象与性质,两点之间的距离公式,解二元一次方程组,及相似三角形的判定与性质.解(2)题的关键是抓住题中OB=OC这一隐含条件,可得出∠BCD=∠ABO=135°,则∠BCD和∠ABO这两个角相等,再按照∠CBD=∠BOA或∠CBD=∠BAO分类讨论,求出点D坐标.
    25.(1)10;(2)见解析;(3)的最小值为,直线l的解析式为
    【分析】
    (1)证明△ADM≌△ECM即可;
    (2)过点M任意作直线CD,交OA于点C,交OB于点D,证明<即可;
    (3)过点P作PB⊥x轴,垂足为B,过点M作MC⊥x轴,垂足为C,利用平行线分线段成比例定理,三角形的中位线定理,求得CQ,PB的长,确定直线上的点的坐标求解即可.
    【详解】
    (1)∵ADBC,点M是CD的中点,
    ∴∠ADM=∠ECM,∠DAM=∠CEM,DM=CM,
    ∴△ADM≌△ECM,
    ∴= =,
    ∵=10,
    ∴=10,
    故答案为:10;
    (2)过点M任意作直线CD,交OA于点C,交OB于点D,设MC>MD,过点P作PE∥OB,交CM于点E,根据(1)的结论,当M为PQ的中点时,得=,
    ∵+=
    ∴<,

    ∴当点M恰好是PQ中点时,最小,
    (3)如图,根据(1)结论,得当PM=QM时,最小,
    过点P作PB⊥x轴,垂足为B,过点M作MC⊥x轴,垂足为C,

    ∴MC∥PB,
    ∵PM=MQ,
    ∴QC=CB,PB=2MC,
    ∵∠MOC=30°,OM=3,
    ∴MC=OMsin30°=,OC=OMcos30°=,
    ∴OQ+QC=OC=,PB=3,
    ∴2OQ+2QC=,
    ∵∠POB=45°,PB=3,
    ∴OB=3,
    ∴OQ+2QC=OB=3,
    ∴OQ=-3,
    ∴==;
    ∵OQ=-3,PB=OB=3,
    ∴Q(-3,0),P(3,3),
    设直线PQ的解析式为y=kx+b,根据题意,得,
    解得,
    ∴直线PQ的解析式为y=()x.
    【点睛】
    本题考查了三角形的全等和性质,一次函数的解析式,三角函数,中位线定理,平行线分线段成比例定理,面积的最小值,通过构造高线,平行线,为中位线定理,平行线分线段成比例定理的使用创造条件是解题的关键.
    相关试卷

    2023年陕西省西安市碑林区中考数学一模试卷(含答案): 这是一份2023年陕西省西安市碑林区中考数学一模试卷(含答案),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年陕西省西安市灞桥区中考数学一模试卷 (含答案): 这是一份2023年陕西省西安市灞桥区中考数学一模试卷 (含答案),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    陕西省西安市2021年中考数学八模试题Word版: 这是一份陕西省西安市2021年中考数学八模试题Word版,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map