搜索
    上传资料 赚现金
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版).doc
    • 解析
      【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(解析版).doc
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)01
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)02
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)03
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)01
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)02
    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)03
    还剩14页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)

    展开
    这是一份【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题23以二次函数与直角三角形问题为背景的解答题原卷版doc、精品中考数学备考专题23以二次函数与直角三角形问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    第三关 以二次函数与直角三角形问题为背景的解答题
    【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。直角三角形的有关知识和二次函数都是初中代数中的重点内容,这两块内容的综合是初中数学最突出的综合内容,因此这类问题就成为中考命题中比较受关注的热点问题.
    【解题思路】
    近几年的中考中,二次函数图形中存在性问题始终是热点和难点。考题内容涉及到分类讨论、数形结合、化归等数学思想,对学生思维能力、模型思想等数学素养要求很高,所以学生的失分现象比较普遍和突出。解这类问题有什么规律可循?所应用的知识点:1.抛物线与直线交点坐标;2.抛物线与直线的解析式;3.勾股定理;4.三角形的相似的性质和判定;5.两直线垂直的条件;运用的数学思想:1.函数与方程;2.数形结合;3.分类讨论;4.等价转化;解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.
    【典型例题】
    【例1】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.

    (1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
    (2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
    【答案】(1),;(2)M(-1,2);(3)满足条件的点P共有四个,分别为(-1,-2), (-1,4), (-1,) ,(-1,).
    【解析】
    试题分析:(1)已知抛物线y=ax2+bx+c的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,可得方程组,解方程组可求得a、b、c的值,即可得抛物线的解析式;根据抛物线的对称性和点A的坐标(1,0)可求得B点的坐标(-3,0),用待定系数法可求得直线BC的解析式;(2)使MA+MC最小的点M应为直线BC与对称轴x=-1的交点,把x=-1代入直线BC的解析式求得y的值,即可得点M的坐标;(3)分①B为直角顶点,②C为直角顶点,③P为直角顶点三种情况分别求点P的坐标.
    试题解析:(1)依题意,得 解之,得
    ∴抛物线解析式为.
    ∵对称轴为x=-1,且抛物线经过A(1,0),
    ∴B(-3,0).
    把B(-3,0)、C(0,3)分别直线y=mx+n,得
    解之,得
    ∴直线BC的解析式为.
    (2)∵MA=MB,∴MA+MC=MB+MC.
    ∴使MA+MC最小的点M应为直线BC与对称轴x=-1的交点.
    设直线BC与对称轴x=-1的交点为M,把x=-1
    代入直线,得y=2.
    ∴M(-1,2)
    (3)设P(-1,t),结合B(-3,0),C(0, 3),得BC2=18,
    PB2=(-1+3)2+t2=4+t2,
    PC2=(-1)2+(t-3)2=t2-6t+10.
    ①若B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10.
    解之,得t=-2.
    ②若C为直角顶点,则BC2+PC2=PB2,即
    18+t2-6t+10=4+t2.解之,得t=4.
    ③若P为直角顶点,则PB2+PC2=BC2,即
    4+t2+t2-6t+10=18.解之,得t1=,t2=.
    综上所述,满足条件的点P共有四个,分别为(-1,-2), (-1,4), (-1,) ,(-1,).

    考点:二次函数综合题.
    【名师点睛】本题是二次函数的综合题,考查的知识点有平面直角坐标系上点的特征、直角三角形的知识,题目综合性较强,有一定的难度;解题时要注意应用数形结合思想、分类讨论思想及方程思想,会综合运用所学的知识灵活的解题.
    【例2】如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C

    (1)求此二次函数解析式;
    (2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;
    (3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.
    【答案】(1);(2)△BCD为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t的值为1或4.
    【解析】
    【分析】
    (1)根据点A、B的坐标,利用待定系数法即可求出二次函数解析式;
    (2)利用配方法及二次函数图象上点的坐标特征,可求出点C、D的坐标,利用两点间的距离公式可求出CD、BD、BC的长,由勾股定理的逆定理可证出△BCD为直角三角形;
    (3)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M、N的坐标,利用两点间的距离公式可求出AM2、AN2、MN2的值,分别令三个角为直角,利用勾股定理可得出关于t的无理方程,解之即可得出结论.
    【详解】
    (1)将、代入,得:
    ,解得:,
    此二次函数解析式为.
    (2)为直角三角形,理由如下:

    顶点的坐标为.
    当时,,
    点的坐标为.
    点的坐标为,





    为直角三角形.
    (3)设直线的解析式为,
    将,代入,得:
    ,解得:,
    直线的解析式为,
    将直线向上平移个单位得到的直线的解析式为.
    联立新直线与抛物线的解析式成方程组,得:,
    解得:,,
    点的坐标为,,点的坐标为,.
    点的坐标为,
    ,,.
    为直角三角形,
    分三种情况考虑:
    ①当时,有,即,
    整理,得:,
    解得:,(不合题意,舍去);
    ②当时,有,即,
    整理,得:,
    解得:,(不合题意,舍去);
    ③当时,有,即,
    整理,得:.

    该方程无解(或解均为增解).
    综上所述:当为直角三角形时,的值为1或4.
    【名师点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.
    【例3】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
    (1)求抛物线的解析式;
    (2)当点P运动到什么位置时,△PAB的面积有最大值?
    (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

    【答案】(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
    【解析】【分析】(1)利用待定系数法进行求解即可得;
    (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
    (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
    【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),
    ∴设抛物线解析式为y=a(x﹣6)(x+2),
    将点A(0,6)代入,得:﹣12a=6,
    解得:a=﹣,
    所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
    (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,
    [来源:学科网ZXXK]
    设直线AB解析式为y=kx+b,[来源:学科网]
    将点A(0,6)、B(6,0)代入,得:

    解得:,
    则直线AB解析式为y=﹣x+6,
    设P(t,﹣t2+2t+6)其中0<t<6,
    则N(t,﹣t+6),
    ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
    ∴S△PAB=S△PAN+S△PBN
    =PN•AG+PN•BM
    =PN•(AG+BM)
    =PN•OB
    =×(﹣t2+3t)×6
    =﹣t2+9t
    =﹣(t﹣3)2+,
    ∴当t=3时,△PAB的面积有最大值;
    (3)如图2,

    ∵PH⊥OB于H,
    ∴∠DHB=∠AOB=90°,
    ∴DH∥AO,
    ∵OA=OB=6,
    ∴∠BDH=∠BAO=45°,
    ∵PE∥x轴、PD⊥x轴,
    ∴∠DPE=90°,
    若△PDE为等腰直角三角形,
    则∠EDP=45°,
    ∴∠EDP与∠BDH互为对顶角,即点E与点A重合,
    则当y=6时,﹣x2+2x+6=6,
    解得:x=0(舍)或x=4,
    即点P(4,6).
    【名师点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
    【方法归纳】解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.
    【针对练习】
    1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.
    (1)求抛物线的解析式和对称轴;
    (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
    (3)设四边形DECO的面积为s,求s关于t的函数表达式.

    2.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
    (1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;
    (2)OE的长是否与a值有关,说明你的理由;
    (3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
    (4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.

    3.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线相交于A(1,),B(4,0)两点.

    (1)求出抛物线的解析式;
    (2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
    (3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
    4.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.
    (1)求抛物线的解析式;
    (2)当何值时,的面积最大?并求最大值的立方根;
    (3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.

    5.已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
    (1)求抛物线的解析式;
    (2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.

    6.如图,抛物线y=ax2+2x与x轴相交于点B,其对称轴为x=3.
    (1)求直线AB的解析式;
    (2)过点O作直线l,使l∥AB,点P是l上一动点,设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
    (3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边,若存在,求出点Q的坐标;若不存在,说明理由.

    7.如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C.
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.

    8.已知:直线y=x﹣3与x轴、y轴分别交于点A、B,抛物线y=x2+bx+c经过点A、B,且交x轴于点C.
    (1)求抛物线的解析式;
    (2)点P为抛物线上一点,且点P在AB的下方,设点P的横坐标为m.
    ①试求当m为何值时,△PAB的面积最大;
    ②当△PAB的面积最大时,过点P作x轴的垂线PD,垂足为点D,问在直线PD上否存在点Q,使△QBC为直角三角形?若存在,直接写出符合条件的Q的坐标若不存在,请说明理由.

    9.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax2+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=2.
    (1)求点B坐标;
    (2)求二次函数y=ax2+bx+c的解析式;
    (3)设一次函数y=x+m的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.

    10.已知二次函数的图象与轴交于、两点,与轴交于点,点的坐标为,且当和时二次函数的函数值相等.
    ()求实数、的值.
    ()如图,动点、同时从点出发,其中点以每秒个单位长度的速度沿边向终点运动,点以每秒个单位长度的速度沿射线方向运动,当点停止运动时,点随之停止运动.设运动时间为秒.连接,将沿翻折,使点落在点处,得到.
    ①是否存在某一时刻,使得为直角三角形?若存在,求出的值;若不存在,请说明理由.
    ②设与重叠部分的面积为,求关于的函数关系式.

    11.如图(1),已知抛物线E:y=ax2+bx+c与x轴交于A,B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),对称轴为直线x=1.[来源:学_科_网]
    (1)填空:a=   ,b=   ,c=   ;
    (2)将抛物线E向下平移d个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求d的取值范围;
    (3)如图(2),设点P是抛物线E上任意一点,点H在直线x=﹣3上,△PBH能否成为以点P为直角顶点的等腰直角三角形?若能,请求出符合条件的点P的坐标;若不能,请说明理由.

    12.如图,在平面直角坐标系中,—抛物线y=﹣a(x+1)(x﹣3)(a>0)与x轴交于A、B两点,与y轴交于点C.抛物线的对称轴与x轴交于点E,过点C作x轴的平行线,与抛物线交于点D,连接DE,延长DE交y轴于点F,连接AD、AF.
    (1)点A的坐标为____________,点B的坐标为_________ ;
    (2)判断四边形ACDE的形状,并给出证明;
    (3)当a为何值时,△ADF是直角三角形?

    13.综合与探究
    如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=﹣x2+x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.
    (1)求A、B两点的坐标及直线l的函数表达式.
    (2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.
    (3)如图2,连接AC,CB,将△ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).

    14.如图,已知直线y=﹣x+4分别交x轴、y轴于点A、B,抛物线过y=ax2+bx+c经过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
    (1)若抛物线的解析式为y=﹣x2+x+4,设其顶点为M,其对称轴交AB于点N.
    ①求点M、N的坐标;[来源:学&科&网]
    ②是否存在点P,使四边形MNPD为菱形?并说明理由;
    (2)当点P的横坐标为2时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形是直角三角形?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

    15.如图,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点.对称轴为直线,点在抛物线上.
    (1)求直线的解析式;
    (2)为直线下方抛物线上的一点,连接、.当的面积最大时,在直线上取一点,过作轴的垂线,垂足为点,连接、.若时,求的值;

    (3)将抛物线沿轴正方向平移得到新抛物线,经过原点.与轴的另一个交点为.设是抛物线上任意一点,点在直线上,能否成为以点为直角顶点的等腰直角三角形?若能,直接写出点的坐标.若不能,请说明理由.
    16.如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣,且抛物线经过A、B两点,交x轴于另一点C.
    (1)求抛物线的解析式;
    (2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;
    (3)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.

    17.已知抛物线的表达式是y=ax2+(1﹣a)x+1﹣2a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.
    (1)请写出A,B两点的坐标:A(   ,0);B(   ,   );
    (2)如图1,当抛物线与x轴只有一个公共点时,求a的值;
    (3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.
    求:①△ABC能否是直角三角形,为什么?
    ②若使得△ABD是直角三角形,请你求出a的值.(求出1个a的值即可)[来源:学#科#网]

    18.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒
    (1)求抛物线解析式;
    (2)当t为何值时,△AMN为直角三角形;
    (3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.

    19.如图,在平面直角坐标系中,抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l,点D(-4,n)在抛物线上.
    (1)求直线CD的解析式;
    (2)E为直线CD下方抛物线上的一点,连接EC,ED,当△ECD的面积最大时,在直线l上取一点M,过M作y轴的垂线,垂足为点N,连接EM,BN,若EM=BN时,求EM+MN+BN的值.
    (3)将抛物线y=x2+2x-3沿x轴正方向平移得到新抛物线y′,y′经过原点O,y′与x轴的另一个交点为F,设P是抛物线y′上任意一点,点Q在直线l上,△PFQ能否成为以点P为直角顶点的等腰直角三角形?若能,直接写出点P的坐标,若不能,请说明理由.

    相关试卷

    【精品】中考数学备考 专题2.6 以二次函数与特殊四边形问题为背景的解答题(原卷版+解析版): 这是一份【精品】中考数学备考 专题2.6 以二次函数与特殊四边形问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题26以二次函数与特殊四边形问题为背景的解答题原卷版doc、精品中考数学备考专题26以二次函数与特殊四边形问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。

    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版): 这是一份【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题21以几何图形中的图形操作与变换问题为背景的解答题原卷版doc、精品中考数学备考专题21以几何图形中的图形操作与变换问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    【精品】中考数学备考 专题2.5 以二次函数与图形的面积、周长及线段的数量问题为背景的解答题(原卷版+解析版): 这是一份【精品】中考数学备考 专题2.5 以二次函数与图形的面积、周长及线段的数量问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题25以二次函数与图形的面积周长及线段的数量问题为背景的解答题原卷版doc、精品中考数学备考专题25以二次函数与图形的面积周长及线段的数量问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【精品】中考数学备考 专题2.3 以二次函数与直角三角形问题为背景的解答题(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map