所属成套资源:全国统考2022版高考数学大一轮复习 备考试题(含解析)
全国统考2022版高考数学大一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系1备考试题(含解析)
展开
这是一份全国统考2022版高考数学大一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系1备考试题(含解析),共6页。
第九章 直线和圆的方程第二讲 圆的方程及直线、圆的位置关系练好题·考点自测 1.[2021安徽省四校联考]直线2x·sin θ+y=0被圆x2+y2-2y+2=0截得的最大弦长为 ( )A.2 B.2 C.3 D.22.[2020全国卷Ⅰ,6,5分][文]已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 ( )A.1 B.2 C.3 D.43.[2016山东,7,5分][文]已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切 B.相交 C.外切 D.相离4.[2020全国卷Ⅲ,10,5分]若直线l与曲线y=和圆x2+y2=都相切,则l的方程为 ( )A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+5.[2021吉林省高三联考]已知圆C:x2+y2=r2(r>0),设p:r≥;q:圆C上至少有3个点到直线x+y-2=0的距离为,则p是q的 ( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.[2018全国卷Ⅲ,8,5分][文]直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是 ( )A.[2,6] B.[4,8]C.[,3] D.[2,3]7.[2020全国卷Ⅰ,11,5分]已知☉M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点.过点P作☉M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为 ( )A.2x-y-1=0 B.2x+y-1=0C.2x-y+1=0 D.2x+y+1=08.[2019北京,11,5分][文]设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为 . 9.[2020浙江,15,6分]已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x-4)2+y2=1均相切,则k= ,b= . 拓展变式1.[2017全国卷Ⅲ,20,12分]已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上.(2)设圆M过点P(4,-2),求直线l与圆M的方程. 2.[2020武汉部分重点中学5月联考]已知圆C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,若M,N分别是圆C1,C2上的点,P是抛物线x2=4y的准线上的一点,则|PM|+|PN|的最小值是 . 3.[原创题]已知直线l:x+2y-3=0与圆C:x2+y2+x-6y+m=0,若直线l与圆C无公共点,则m的取值范围是 ( )A.(1,8) B.(8,) C.(1,37) D.(8,+∞)4.[2021广西模拟]在平面直角坐标系xOy中,过圆C1:(x-k)2+(y+k-4)2=1上任意一点P作圆C2:x2+y2=1的一条切线,切点为Q,则当|PQ|最小时,k= . 5.圆C1:x2+y2-2x+10y-24=0和圆C2:x2+y2+2x+2y-8=0的公共弦所在直线的方程为 ,公共弦长为 . 6.(1)[2020武汉武昌实验中学考前模拟]过点D(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则弦AB所在直线的方程为 ( )A.2y-1=0 B.2y+1=0C.x+2y-1=0 D.x-2y+1=0(2)[2020河北冀州中学模拟]已知圆C:x2+y2-2x-4y+3=0.①若圆C的一条切线在x轴和y轴上的截距相等,则此切线的方程为 ; ②从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则|PM|的最小值为 . 7.阿波罗尼斯是古希腊著名数学家,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,其中阿波罗尼斯圆是他的研究成果之一,即已知动点M与两定点A,B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.已知圆O:x2+y2=1上的动点M和定点A(,0),B(1,1),则2|MA|+|MB|的最小值为 ( )A. B. C. D. 答 案第九章 直线和圆的方程第二讲 圆的方程及直线、圆的位置关系 1.D 根据题意,圆x2+y2-2y+2=0,即x2+(y)2=3,其圆心为(0,),半径r=,圆心到直线2x·sin θ+y=0的距离d=≥=1,当圆心到直线的距离最小时,直线2x·sin θ+y=0被圆x2+y2-2y+2=0截得的弦长最大,而d=的最小值为1,则直线2x·sin θ+y=0被圆x2+y2-2y+2=0截得的最大弦长为2×=2,故选D.2.B 将圆的方程x2+y2-6x=0化为标准方程(x-3)2+y2=9,设圆心为C,则C(3,0),半径r=3.设点(1,2)为点A,过点A(1,2)的直线为l,因为(1-3)2+22<9,所以点A(1,2)在圆C的内部,则直线l与圆C必相交,设交点分别为B,D.易知当直线l⊥AC时,直线l被该圆所截得的弦的长度最小,设此时圆心C到直线l的距离为d,则d=|AC|==2,所以|BD|min=2=2=2,即弦的长度的最小值为2,故选B.【方法总结】 (1)一条直线被圆所截得的弦为AB,则|AB|=2(其中r为圆的半径,d为圆心到直线的距离).(2)过圆内一点P的直线为l,当直线l⊥PC(其中C为圆心)时,直线l被圆所截得的弦的长度取得最小值;当直线l过圆心时,直线l被圆所截得的弦的长度取得最大值,最大值即圆的直径.3.B 由题知圆M:x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=,所以2=2,解得a=2.圆M,圆N的圆心距|MN|=,两圆半径之差为1,故两圆相交.4.D 易知直线l的斜率存在,设直线l的方程为y=kx+b,则 ①,设直线l与曲线y=的切点坐标为(x0,)(x0>0),则y'=k ②,=kx0+b ③,由②③可得b=,将b=,k=代入①得x0=1或x0=(舍去),所以k=b=,故直线l的方程为y=x+.5.C 圆C的圆心为(0,0),其到直线x+y-2=0的距离为1.当0<r<时,圆上没有点到直线的距离为;当r=时,圆上有1个点到直线的距离为;当<r<时,圆上有2个点到直线的距离为;当r=时,圆上有3个点到直线的距离为;当r>时,圆上有4个点到直线的距离为;要使圆C上至少有3个点到直线x+y-2=0的距离为,则r≥,所以p是q的充要条件,故选C.6.A 圆心(2,0)到直线的距离d==2,所以点P到直线的距离d1∈[,3].根据直线的方程可知A,B两点的坐标分别为A(-2,0),B(0,-2),所以|AB|=2,所以△ABP的面积S=|AB|·d1=d1.因为d1∈[,3],所以S∈[2,6],即△ABP面积的取值范围是[2,6].【素养落地】 本题考查直线与圆的位置关系、点到直线的距离公式及三角形面积的求解,体现了逻辑推理和数学运算等核心素养,试题难度中等.求解此题的关键是确定三角形的高的取值范围.当直线与圆相离时,若已知圆的半径r,圆心到直线的距离d,则圆上的点到直线的距离的最大值为d+r,最小值为d-r.7.D 由☉M:x2+y2-2x-2y-2=0 ①,得☉M:(x-1)2+(y-1)2=4,所以圆心M(1,1).图D 9-2-1如图D 9-2-1,连接AM,BM,易知PM⊥AB,所以四边形PAMB的面积为|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需△PAM的面积最小.因为|AM|=2,所以只需|PA|最小.因为|PA|=,所以只需直线2x+y+2=0上的动点P到M的距离最小,其最小值为,此时PM⊥l,易求出直线PM的方程为x-2y+1=0.由得所以P(-1,0).因为∠PAM=∠PBM=90°,所以A,B在以PM为直径的圆上.所以此圆的方程为x2+(y)2=()2,即x2+y2-y-1=0 ②,由①-②得,直线AB的方程为2x+y+1=0,故选D.8.(x-1)2+y2=4 因为抛物线的标准方程为y2=4x,所以焦点F(1,0),准线l的方程为x=-1.因为所求的圆以F为圆心,且与准线l相切,故圆的半径r=2,所以圆的方程为(x-1)2+y2=4.9. 解法一 因为直线y=kx+b(k>0)与圆x2+y2=1,圆(x-4)2+y2=1都相切,所以=1,得k=,b=.解法二 因为直线y=kx+b(k>0)与圆x2+y2=1,圆(x-4)2+y2=1都相切,所以直线y=kx+b必过两圆心连线的中点(2,0),所以2k+b=0.设直线y=kx+b的倾斜角为θ,则sin θ=,又k>0,所以θ=,所以k=tan ,b=-2k=.1.(1)设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.则·=x1x2+y1y2=0,所以OA⊥OB.又圆M是以线段AB为直径的圆,故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=时,直线l的方程为2x+y-4=0,圆心M的坐标为(,),圆M的半径为,圆M的方程为(x)2+(y+)2=.2.54 依题意知,抛物线x2=4y的准线方程为y=-1,则圆C1关于直线y=-1的对称圆的圆心为C3(1,-5),半径为3.圆C2的圆心为(0,2),半径为1,连接C2C3,由图象可知(图略),当P,C2,C3三点共线时,|PM|+|PN|取得最小值,其最小值为圆C3与圆C2的圆心距减去两个圆的半径之和,即(|PM|+|PN|)min=|C2C3|-3-1=4=54.3.B 将圆C的方程配方,得(x+)2+(y-3)2=,则有>0,解得m<.因为直线l与圆C无公共点,所以圆心(,3)到直线x+2y-3=0的距离大于半径,即,解得m>8.所以m的取值范围是(8,).故选B.4.2 由题意知,|C1C2|=≥2>2,所以圆C1与圆C2外离,示意图如图D 9-2-2所示. 因为PQ为圆C2的切线,所以PQ⊥C2Q,由勾股定理,得|PQ|=,要使|PQ|最小,则需|PC2|最小.显然当点P为C1C2与圆C1的交点时,|PC2|最小,此时|PC2|=|C1C2|-1,所以当|C1C2|最小时,|PC2|最小.易知当k=2时,|C1C2|取最小值,即|PQ|最小.5.x-2y+4=0 2 联立两圆的方程,得两式相减并整理得x-2y+4=0,所以两圆公共弦所在直线的方程为x-2y+4=0.解法一 设两圆相交于点A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组解得或所以|AB|==2,即公共弦长为2.解法二 由x2+y2-2x+10y-24=0,得(x-1)2+(y+5)2=50,其圆心坐标为(1,-5),半径r=5,圆心到直线x-2y+4=0的距离d==3.设公共弦长为2l,由勾股定理得r2=d2+l2,即50=(3)2+l2,解得l=,故公共弦长2l=2.6.(1)B 解法一(常规解法) 由圆C:(x-1)2+y2=1的方程可知其圆心为C(1,0),半径为1.连接CD,以线段CD为直径的圆的方程为(x-1)(x-1)+(y+2)(y-0)=0,整理得(x-1)2+(y+1)2=1.将两圆的方程相减,可得公共弦AB所在直线的方程为2y+1=0.故选B.解法二(结论解法) 由与圆的切线有关的结论(详见主书P181【思维拓展】(2))得弦AB所在直线的方程为(1-1)(x-1)+(-2)y=1,即2y+1=0.故选B.(2)①(2)x-y=0或(+2)x+y=0或x+y-1=0或x+y-5=0 圆C的方程可化为(x-1)2+(y-2)2=2,当直线在两坐标轴上的截距为零时,设直线方程为y=kx(k≠0),由直线与圆相切,得,解得k=-2±.所以切线方程为y=(-2+)x或y=(-2)x.当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由直线与圆相切,得,解得a=1或a=5.所以切线方程为x+y-1=0或x+y-5=0.综上所述,所求的切线方程为(-2+)x-y=0或(2+)x+y=0或x+y-1=0或x+y-5=0.② 由|PM|=|PO|,得2=,整理得2x1+4y1-3=0,即点P在直线l:2x+4y-3=0上.又|PM|=,所以要使|PM|取得最小值,只需|CP|取得最小值,记圆心C(1,2)到直线l:2x+4y-3=0的距离为d,可知d≤|CP|,当且仅当d=|CP|时,|CP|取得最小值.因为d=,所以|PM|min=.7.C ①当点M在x轴上时,点M的坐标为(-1,0)或(1,0).若点M的坐标为(-1,0),则2|MA|+|MB|=2×=1+;若点M的坐标为(1,0),则2|MA|+|MB|=2×=4.②当点M不在x轴上时,取点K(-2,0),连接OM,MK,因为|OM|=1,|OA|=,|OK|=2,所以=2.因为∠MOK=∠AOM,所以△MOK∽△AOM,则=2,所以|MK|=2|MA|,则2|MA|+|MB|=|MB|+|MK|.易知|MB|+|MK|≥|BK|,可知|MB|+|MK|的最小值为|BK|.因为B(1,1),K(-2,0),所以(2|MA|+|MB|)min=|BK|=.综上,易知2|MA|+|MB|的最小值为.故选C.
相关试卷
这是一份高考数学大一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系1试题文含解析,共8页。
这是一份高考数学大一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系1试题文含解析,共6页。试卷主要包含了[改编题]下列说法正确的是等内容,欢迎下载使用。
这是一份全国统考2022版高考数学大一轮复习第8章立体几何第4讲直线平面垂直的判定及性质2备考试题(含解析),共9页。