数学必修33.3.1几何概型练习题
展开几 何 概 型
(20分钟 35分)
1.下列概率模型中,几何概型的个数为 ( )
①从区间[-10,10]内任取出一个数,求取到1的概率;
②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率;
③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;
④向一个边长为4 cm的正方形ABCD内投一点P,求点P离中心不超过1 cm的概率.
A.1 B.2 C.3 D.4
【解析】选B.①不是几何概型,虽然区间[-10,10]有无限多个点,但取到“1”只是一个数字,不能构成区域长度;②是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;④是几何概型,因为在边长为4 cm的正方形和半径为1 cm的圆内均有无数多个点,且这两个区域内的任何一个点都有相等可能被投到,故满足无限性和等可能性.
2.如图所示,在一个边长为a,b(a>b>0)的矩形内画一个梯形,梯形上、下底长分别为与,高为b.向该矩形内随机地投一点,则所投的点落在梯形内部的概率为 ( )
A. B. C. D.
【解析】选C.S矩形=ab,
S梯形=b=ab.
故所投的点在梯形内部的概率为
P===.
3.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.
若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率
为 ( )
A. B. C. D.
【解析】选B.如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为=.
4.方程x2+x+n=0(n∈(0,1))有实根的概率为_____.
【解析】由于方程x2+x+n=0(n∈(0,1))有实根,
所以Δ≥0,即1-4n≥0,所以n≤,
又n∈(0,1),所以有实根的概率为P==.
答案:
5.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为______.
【解析】大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A,则事件A构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P(A)==0.005.
答案:0.005
6.已知一只蚂蚁在边长为4的正三角形内爬行,求此蚂蚁到三角形三个顶点的距离均超过1的概率.
【解析】设正三角形ABC的边长为4,其面积为4.分别以A,B,C为圆心,1为半径在△ABC中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,
其面积为4-3×××12=4-,
故所求概率P==1-π.
(30分钟 60分)
一、选择题(每小题5分,共25分)
1.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为 ( )
A. B. C. D.
【解析】选C.设AC=x cm,CB=(12-x)cm,0<x<12,所以矩形面积小于32 cm2,即为x(12-x)<32⇒0<x<4或8<x<12,故所求概率为=.
2.一只蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中始终保持与正方体玻璃容器的6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一个位置的可能性相同,那么蜜蜂飞行是安全的概率为 ( )
A. B. C. D.
【解析】选C.由题意,可知当蜜蜂在棱长为10的正方体区域内飞行时才是安全的,所以由几何概型的概率计算公式,知蜜蜂飞行是安全的概率为=.
3.如图,A是圆O上固定的一点,在圆上其他位置任取一点A′,连接AA′,它是一条弦,它的长度小于或等于半径长度的概率为 ( )
A. B. C. D.
【解析】选C.如图,当AA′的长度等于半径长度时,∠AOA′=60°,
由圆的对称性及几何概型得P==.
4.球O与棱长为a的正方体ABCD -A1B1C1D1的各个面均相切,如图,用平行于底面的平面截去长方体A2B2C2D2-A1B1C1D1,得到截面A2B2C2D2,且A2A=a,现随机向截面A2B2C2D2上撒一粒黄豆,则黄豆落在截面中的圆内的概率为 ( )
A. B. C. D.
【解析】选B.由题意知,截面中的圆的半径为=a,面积为a2,又因为截面A2B2C2D2的面积为a2,所以黄豆落在截面中的圆内的概率为.
5.如图所示,分别以点B和点D为圆心,以线段BD的长为半径作两个圆.若在该图形内任取一点,则该点取自四边形ABCD内的概率为 ( )
A. B.
C. D.
【解析】选A.设两圆的半径均为2,由已知可得△ABD、△BCD是全等的等边三角形,
所以S四边形ABCD=2××22×=2.
整个图形可以看作由两个弓形组成,
其面积为
S=2=π+2.
所以所求的概率为P== .
【补偿训练】
一只蚂蚁在边长为4的正三角形区域内随机爬行,则在离三个顶点距离都大于2的区域内的概率为 ( )
A.1- B.
C. D.
【解析】选A.满足条件的正△ABC如图所示:
其中正△ABC的面积为S△ABC=×42=4,
满足到正△ABC的顶点A,B,C的距离均不大于2的平面区域如图中阴影部分所示,
阴影部分区域的面积为S=×π×22=2π.
则使取到的点到三个顶点A,B,C的距离都大于2的概率是P=1-=1-.
二、填空题(每小题5分,共15分)
6.设D是半径为R的圆周上的一定点,在圆周上随机取一点C,连接CD得一弦,若A表示“所得弦的长大于圆内接等边三角形的边长”,则P(A)=______.
【解析】如图所示,△DPQ为圆内接正三角形,当C点位于劣弧上时,弦DC>PD,所以P(A)=.
答案:
7.在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为______.
【解析】点P到点A的距离小于等于a可以看作是随机的,点P到点A的距离小于等于a可视作构成事件的区域,棱长为a的正方体ABCD-A1B1C1D1可视作试验的所有结果构成的区域,可用“体积比”公式计算概率P==π.
答案:π
8.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足|PH|<的概率为______.
【解析】如图,设E,F分别为边AB,CD的中点,则满足|PH|<的点P在△AEH,扇形HEF及△DFH内,由几何概型的概率计算公式知,
所求概率为=+.
答案:+
三、解答题(每小题10分,共20分)
9.已知点M(x,y)满足|x|≤1,|y|≤1.求点M落在圆(x-1)2+(y-1)2=1的内部的概率.
【解析】如图所示,区域Ω为图中的正方形,
正方形的面积为4,且阴影部分是四分之一圆,其面积为π,则点M落在圆(x-1)2+(y-1)2=1的内部的概率为=.
10.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.
【解析】设事件A:“硬币不与任何一条平行线相碰”.为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图,这样线段OM长度(记作|OM|)的取值范围是[0,a],只有当r<|OM|≤a时,硬币不与平行线相碰,其长度范围是(r,a].
所以P(A)==.
1.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由一个半圆和一个四分之一圆构成,两个阴影部分分别标记为A和M.在此图内任取一点,此点取自A区域的概率记为P,取自M区域的概率记为P,则 ( )
A.P>P
B.P<P
C.P=P
D.P与P的大小关系与半径长度有关
【解析】选C.由题意,设四分之一圆的半径为R,则半圆的半径为R,阴影部分A的面积为R2,空白部分的面积为πR2-R2,阴影部分M的面积为×π×-=R2,
阴影部分A的面积=阴影部分M的面积,
所以P(A)=P(M).
2.甲乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.
【解析】设甲、乙两艘船到达码头的时刻分别为x与y,记事件A为“两船都不需要等待码头空出”,则0≤x≤24,0≤y≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h以上或乙比甲早到达2 h以上,即y-x≥1或x-y≥2.故所求事件构成集合A={(x,y)|y-x≥1或x-y≥2,x∈[0,24],y∈[0,24]}.A为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.
所求概率为P(A)==
==.
【补偿训练】
如图,已知AB是半圆O的直径,AB=8,M,N,P是将半圆圆周四等分的三个分点.
(1)从A,B,M,N,P这5个点中任取3个点,求这3个点组成直角三角形的概率;
(2)在半圆内任取一点S,求△SAB的面积大于8的概率.
【解析】(1)从A,B,M,N,P这5个点中任取3个点,一共可以组成10个三角形:△ABM,△ABN,△ABP,△AMN,△AMP,△ANP,△BMN,△BMP,△BNP,△MNP,其中是直角三角形的只有△ABM,△ABN,△ABP 3个,所以组成直角三角形的概率为.
(2)连接MP,取线段MP的中点D,则OD⊥MP,
易求得OD=2,当S点在线段MP上时,S△ABS=×2×8=8,
所以只有当S点落在阴影部分时,△SAB的面积才能大于8,而S阴影=S扇形M OP-S△O MP=××42-×42=4π-8,所以由几何概型的概率公式得△SAB的面积大于8的概率为=.
人教版新课标A必修33.2.2随机数的产生练习: 这是一份人教版新课标A必修33.2.2随机数的产生练习,共7页。试卷主要包含了2B等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.3概率的基本性质课后复习题: 这是一份高中数学人教版新课标A必修33.1.3概率的基本性质课后复习题,共7页。试卷主要包含了02+0等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.2概率的意义课后作业题: 这是一份高中数学人教版新课标A必修33.1.2概率的意义课后作业题,共7页。试卷主要包含了某事件的概率是万分之一,说明了,94,0,小明和小展按如下规则做游戏等内容,欢迎下载使用。