高中数学人教B版 (2019)必修 第二册5.3.4 频率与概率一课一练
展开频率与概率
(15分钟 30分)
1.从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是 ( )
A.次品率小于10% B.次品率大于10%
C.次品率等于10% D.次品率接近10%
【解析】选D.抽出的样本中次品的频率为,即10%,所以样本中次品率大约为10%,所以总体中次品率大约为10%.
【补偿训练】
在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是 ( )
A.100个手术有99个手术成功,有1个手术失败
B.这个手术一定成功
C.99%的医生能做这个手术,另外1%的医生不能做这个手术
D.这个手术成功的可能性大小是99%
【解析】选D.成功率大约是99%,说明手术成功的可能性大小是99%.
2.掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续掷到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( )
A.一定出现“6点朝上”
B.出现“6点朝上”的概率大于
C.出现“6点朝上”的概率等于
D.无法预测“6点朝上”的概率
【解析】选C.随机事件具有不确定性,与前面的试验结果无关.由于正方体骰子的质地是均匀的,所以出现哪一个面朝上的可能性都是相等的.
【补偿训练】
高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某人说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话( )
A.正确 B.错误
C.不一定 D.无法解释
【解析】选B.把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有1,2,4,…甚至12个题都选择正确.
3.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理? ( )
A.甲公司 B.乙公司
C.甲、乙公司均可 D.以上都对
【解析】选B.由题意得肇事车是甲公司的概率为,是乙公司的概率为,可以认定肇事车为乙公司的车辆较为合理.
4.(2020·潍坊高一检测)一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000辆汽车,时间是从2019年的1月1日到2020年的1月1日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年时间里挡风玻璃破碎的概率近似为________.
【解析】记“一辆汽车在一年时间里挡风玻璃破碎”为事件A,由概率的定义知,事件A发生的概率大约为==0.03.
答案:0.03
5.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.
【解析】设总体中的个体数为x,则=,所以x=120.
答案:120
6.在一次试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个有圆形细胞的豚鼠被感染,50个有椭圆形细胞的豚鼠被感染,有不规则形状细胞的豚鼠全部被感染.根据试验结果,分别估计(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠被这种血清感染的概率.
【解析】(1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,
所以P(A)=0.
(2)记“椭圆形细胞的豚鼠被感染”为事件B,由题意知P(B)===0.2.
(3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,
所以P(C)=1.
(30分钟 60分)
一、选择题(每小题5分,共20分)
1.下列叙述的事件中最能体现概率是0.5的是 ( )
A.抛掷一枚骰子10次,其中数字6朝上出现了5次,抛掷一枚骰子数字6朝上的概率
B.某地在8天内下雨4天,该地每天下雨的概率
C.进行10 000次抛掷硬币试验,出现5 001次正面向上,那么抛掷一枚硬币正面向上的概率
D.某人买了2张体育彩票,其中一张中500万大奖,那么购买一张体育彩票中500万大奖的概率
【解析】选C.A,B,D中试验次数较少,只能说明相应事件发生的频率是0.5.
2.甲、乙两人做游戏,下列游戏中不公平的是 ( )
A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜
B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜
C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜
D.甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜
【解析】选B.对于A,C,D,甲胜,乙胜的概率都是,游戏是公平的;对于B,点数之和大于7和点数之和小于7的概率相等,但点数之和等于7时乙胜,所以甲胜的概率小,游戏不公平.
3.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:
满意情况 | 不满意 | 比较满意 | 满意 | 非常满意 |
人数 | 200 | n | 2 100 | 1 000 |
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是( )
A. B. C. D.
【解析】选C.由题意得,4 500-200-1 000=3 300,所以随机调查的消费者中对网上购物“比较满意”或“满意”的概率为=.
由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为.
【补偿训练】
一袋中有大小相同的红球5个、黑球4个,现从中任取5个球,至少有1个红球的概率为 ( )
A. B. C. D.1
【解析】选D.因为这是一个必然事件,所以其概率为1.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90名,阅读过《红楼梦》的学生共有80名,阅读过《西游记》且阅读过《红楼梦》的学生共有60名,则该校阅读过《西游记》的学生人数与该校学生总人数比值的估计值为 ( )
A.0.5 B.0.6 C.0.7 D.0.8
【解析】选C.由题意得,被调查学生中阅读过《西游记》的学生人数为90-80+60=70,则所求比值的估计值为70÷100=0.7.
二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)
5.下列命题中错误的是 ( )
A.设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品
B.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是
C.随机事件发生的频率就是这个随机事件发生的概率
D.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是
【解析】选ABC.A错,次品率是指出现次品的可能性,从中任取200件,可能有10件次品,也可能没有.BC混淆了频率与概率的区别,D正确.
6.今天北京的降雨概率是80%,上海的降雨概率是20%,下列说法正确的是( )
A.北京今天一定降雨,而上海一定不降雨
B.上海今天可能降雨,而北京可能没有降雨
C.北京和上海都可能没降雨
D.北京降雨的可能性比上海大
【解析】选BCD.北京的降雨概率是80%大于上海的降雨概率20%,说明北京降雨的可能性比上海大,也可能都降雨,也可能都没有降雨,但是不能确定北京今天一定降雨,上海一定不降雨,所以B,C,D正确.
三、填空题(每小题5分,共10分)
7.投掷硬币的结果如表:
投掷硬币的次数 | 200 | 500 | c |
正面向上的次数 | 102 | b | 404 |
正面向上的频率 | a | 0.482 | 0.505 |
则a=__________,b=__________,c=__________.
据此可估计若掷硬币一次,正面向上的概率为__________.
【解析】a==0.51,b=500×0.482=241;
c==800.
易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.
答案:0.51 241 800 0.5
8.利用简单随机抽样的方法抽取某校200名学生,其中戴眼镜的学生有123人,若在这个学校随机调查一名学生,则他戴眼镜的概率约为________.
【解析】样本中的学生戴眼镜的频率为=0.615,所以随机调查一名学生,他戴眼镜的概率约为0.615.
答案:0.615
【补偿训练】
根据山东省教育研究机构的统计资料,现在学校中学生近视率约为37.4%,某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为 ( )
A.374副 B.224.4副
C.不少于225副 D.不多于225副
【解析】选C.根据概率相关知识,该校近视学生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.四、解答题(每小题10分,共20分)
9.街头有人玩一种游戏,方法是同时投掷两枚骰子,如果两枚骰子点数之和是2,3,4,10,11,12这六种情况,红方胜,而当两枚骰子点数之和是5,6,7,8,9时,白方胜,这种游戏对双方公平吗?若不公平,请说明哪方占便宜?
【解析】两枚骰子点数之和情况如表:
| 1 | 2 | 3 | 4 | 5 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
3 | 4 | 5 | 6 | 7 | 8 | 9 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
其中点数之和是2,3,4,10,11,12这六种情况的共12种,频率是=,
两枚骰子点数之和是5,6,7,8,9的情况共24种,频率是=,所以这种游戏对双方不公平,白方占便宜.
10.活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球约有多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
【解析】(1)因为20×400=8 000,
所以摸到红球的频率为:=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.
所以估计袋中红球约有15个.
某高中启动了“全民阅读,书香校园”活动,在活动期间用简单随机抽样方法,抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,所得数据的茎叶图如图所示.将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,试估计该校900名学生中“读书迷”有多少人;
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
①共有多少种不同的抽取方法?
②求抽取的男、女两位“读书迷”月均课外阅读时间相差不超过2小时的概率.
【解析】(1)设该校900名学生中“读书迷”有x人,由茎叶图得30名学生中有7名学生月均课外阅读时间不低于30小时,所以30名学生中“读书迷”的频率是,则=,解得x=210,
故估计该校900名学生中“读书迷”有210人.
(2)①由茎叶图得7名“读书迷”中男生有3人,设为a35,a38,a41,
女生有4人,设为b34,b36,b38,b40(其中符号下标表示该学生月均课外阅读时间),
则从7名“读书迷”中随机抽取男、女“读书迷”各1人的所有基本事件为(a35,b34),(a35,b36),(a35,b38),(a35,b40),(a38,b34),(a38,b36),(a38,b38),(a38,b40),
(a41,b34),(a41,b36),(a41,b38),(a41,b40),共12个,所以共有12种不同的抽取方法.
②设A表示事件:抽取的男、女两位“读书迷”月均课外阅读时间相差不超过2小时.则事件A包含(a35,b34),(a35,b36),(a38,b36),(a38,b38),(a38,b40),(a41,b40),共6个,则P(A)==,所以抽取的男、女两位“读书迷”月均课外阅读时间相差不超过2小时的概率为.
【补偿训练】
在某区“创文明城区”(简称“创城”)活动中,教委对本区A,B,C,D四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成表格:
学校 | A | B | C | D |
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)
假设每名高中学生是否参与“创城”活动是相互独立的.
(1)若该区共2 000名高中学生,估计A学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在表中从B,C两校没有参与“创城”活动的同学中随机抽取2人,求恰好B,C两校各有1人没有参与“创城”活动的概率是多少?
【解析】(1)A学校高中生的总人数为50÷=1 000,A学校参与“创城”活动的人数为1 000×=800.
(2)设恰好该生没有参与“创城”活动这一事件为M,则P==.
(3)B校这5人分别记为A1,A2,A3,A4,A5,C校这1人记为B1,任取2人共15种情况:A1A2,A1A3,A1A4,A1B1,A1A5,A2A3,A2A4,A2B1,A2A5,A3A4,A3B1,A3A5,A4B1,A4A5,A5B1,设事件N为抽取2人中B,C两校各有1人没有参与“创城”活动,则P==.
人教B版 (2019)必修 第二册5.3.4 频率与概率当堂达标检测题: 这是一份人教B版 (2019)必修 第二册5.3.4 频率与概率当堂达标检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教B版 (2019)必修 第二册5.1.2 数据的数字特征课堂检测: 这是一份高中数学人教B版 (2019)必修 第二册5.1.2 数据的数字特征课堂检测,共9页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
高中数学人教B版 (2019)必修 第二册5.1.3 数据的直观表示当堂达标检测题: 这是一份高中数学人教B版 (2019)必修 第二册5.1.3 数据的直观表示当堂达标检测题,共10页。试卷主要包含了0 ℃B,1-38等内容,欢迎下载使用。