|试卷下载
搜索
    上传资料 赚现金
    专题21 平行四边形 易错题之选择题(32题)--八年级数学下册同步易错题精讲精练(北师大版)(解析版)
    立即下载
    加入资料篮
    专题21 平行四边形 易错题之选择题(32题)--八年级数学下册同步易错题精讲精练(北师大版)(解析版)01
    专题21 平行四边形 易错题之选择题(32题)--八年级数学下册同步易错题精讲精练(北师大版)(解析版)02
    专题21 平行四边形 易错题之选择题(32题)--八年级数学下册同步易错题精讲精练(北师大版)(解析版)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第六章 平行四边形综合与测试课后测评

    展开
    这是一份2021学年第六章 平行四边形综合与测试课后测评,共24页。

    专题21 平行四边形 易错题之选择题(32题)
    Part1 与 平行四边形的性质 有关的易错题
    1.(2019·山东淄博市期末)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为(  )

    A.15 B.18 C.21 D.24
    【答案】A
    【分析】
    此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.
    【详解】
    解:∵▱ABCD的周长为36,
    ∴2(BC+CD)=36,则BC+CD=18.
    ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,
    ∴OD=OB=BD=6.
    又∵点E是CD的中点,DE=CD,
    ∴OE是△BCD的中位线,∴OE=BC,
    ∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,
    即△DOE的周长为15.
    故选A
    【点睛】
    此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.
    2.(2020·山东菏泽市·八年级期末)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为(  )

    A.6 B.12 C.18 D.24
    【答案】B
    【解析】
    ∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
    ∵AC的垂直平分线交AD于点E,∴AE=CE,
    ∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
    故选B.
    3.(2020·内蒙古包头市·八年级期末)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  )

    A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE
    【答案】D
    【解析】
    由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OB≠OC,得出∠OBE≠∠OCE,选项D错误;即可得出结论.
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,AB∥DC,
    又∵点E是BC的中点,
    ∴OE是△BCD的中位线,
    ∴OE=DC,OE∥DC,
    ∴OE∥AB,
    ∴∠BOE=∠OBA,
    ∴选项A、B、C正确;
    ∵OB≠OC,
    ∴∠OBE≠∠OCE,
    ∴选项D错误;
    故选D.
    “点睛”此题考查了平行四边形的性质,还考查了三角形中位线定理,解决问题的方法是采用排除法解答.
    4.(2020·山东枣庄市·八年级期末)如图,在中,将沿AC折叠后,点D恰好落在DC的延长线上的点E处.若,,则的周长为(  )

    A.12 B.15 C.18 D.21
    【答案】C
    【分析】
    依据平行四边形的性质以及折叠的性质,即可得到,,,再根据是等边三角形,即可得到的周长为.
    【详解】
    由折叠可得,,

    又,



    由折叠可得,,

    是等边三角形,
    的周长为,
    故选C.
    【点睛】
    本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    5.(2020·山东临沂市河东区八年级期末)如图,▱ABCD中,对角线、相交于点O,交于点E,连接,若▱ABCD的周长为28,则的周长为( )

    A.28 B.24 C.21 D.14
    【答案】D
    【分析】
    根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.
    【详解】
    解:∵四边形是平行四边形,
    ∴,,,
    ∵平行四边形的周长为28,

    ∵,
    ∴是线段的中垂线,
    ∴,
    ∴的周长,
    故选D.
    【点睛】
    本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.
    6.(2018·贵州毕节市·八年级期末)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()

    A.18 B.28 C.36 D.46
    【答案】C
    【详解】
    ∵四边形ABCD是平行四边形,∴AB=CD=5.
    ∵△OCD的周长为23,∴OD+OC=23﹣5=18.
    ∵BD=2DO,AC=2OC,
    ∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36.
    故选C.
    7.(2020·山东枣庄市·八年级期末)如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )

    A.8.3 B.9.6 C.12.6 D.13.6
    【答案】B
    【解析】
    解:根据平行四边形的中心对称性得:OF=OE=1.3.∵▱ABCD的周长=(4+3)×2=14
    ∴四边形BCEF的周长=×▱ABCD的周长+2.6=9.6.故选B.
    8.(2019·河南平顶山市·八年级期末)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是(  )

    A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2
    【答案】A
    【详解】
    试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,
    若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.
    考点:1.平行四边形的性质2.全等三角形的判定.
    Part2 与 平行四边形的判定 有关的易错题
    9.(2019·河南信阳市·八年级期末)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于 (   )

    A.1cm B.2cm C.3cm D.4cm
    【答案】B
    【解析】
    解:如图,

    ∵AE平分∠BAD交BC边于点E,
    ∴∠BAE=∠EAD,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC=5,
    ∴∠DAE=∠AEB,
    ∴∠BAE=∠AEB,
    ∴AB=BE=3,
    ∴EC=BC-BE=5-3=2.
    故选B.
    10.(2020·四川广安市·八年级期末)如图,是▱ABCD边延长线上一点,连接,,,交于点.添加以下条件,不能判定四边形为平行四边形的是( )

    A. B.
    C. D.
    【答案】C
    【分析】
    根据平行四边形的性质得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四边形BCED为平行四边形,故A正确;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到EF=BF,于是得到四边形BCED为平行四边形,故B正确;根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故C错误;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确.
    【详解】
    ∵四边形是平行四边形,
    ∴,,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴为平行四边形,故A正确;
    ∵,
    ∴,
    在与中,

    ∴,
    ∴,
    ∵,
    ∴四边形为平行四边形,故B正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    同理,,
    ∴不能判定四边形为平行四边形;故C错误;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴四边形为平行四边形,故D正确,
    故选C.
    【点睛】
    本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.
    11.(2019·天津八年级期末)如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是(  )

    A.AE=CF B.BE=DF
    C.∠EBF=∠FDE D.∠BED=∠BFD
    【答案】B
    【分析】
    由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
    【详解】
    四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    A、∵AE=CF,
    ∴DE=BF,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF;
    B、∵BE=DF,
    四边形BFDE是等腰梯形,
    本选项不一定能判定BE//DF;
    C、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠EBF=∠FDE,
    ∴∠BED=∠BFD,
    四边形BFDE是平行四边形,
    ∴BE//DF,
    故本选项能判定BE//DF;
    D、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠BED=∠BFD,
    ∴∠EBF=∠FDE,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF.
    故选B.
    【点睛】
    本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
    12.(2019·河北唐山市·八年级期末)在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是(  )
    A.OA=OC,OB=OD B.OA=OC,AB∥CD
    C.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD
    【答案】C
    【分析】
    根据平行四边形的判定方法得出A、B、D正确,C不正确;即可得出结论.
    【详解】
    解:A.∵ OA=OC,OB=OD
    ∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),
    ∴A正确,故本选项不符合要求;
    B. ∵AB∥CD
    ∴∠DAO=∠BCO,
    在△DAO与△BCO中,
    ∴△DAO≌△BCO(ASA),
    ∴OD=OB,
    又OA=OC,
    ∴四边形ABCD是平行四边形,∴B正确,故本选项不符合要求;

    C. 由 AB=DC, OA=OC,
    ∴无法得出四边形ABCD是平行四边形.故不能能判定这个四边形是平行四边形,符合题意;∵AB∥DC,
    D.∵∠ADB=∠CBD,∠BAD=∠BCD
    ∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形),∴D正确,故本选项不符合要求;故选C.
    【点睛】
    本题考查平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.
    13.(2020·渠县八年级期末)在平行四边形中,于点,于点,若,,平行四边形的周长为,则( )

    A. B. C. D.
    【答案】D
    【分析】
    已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.
    【详解】
    解:设BC=xcm,则CD=(20−x)cm,
    根据“等面积法”得,4x=6(20−x),
    解得x=12,
    ∴平行四边形ABCD的面积=4x=4×12=48;
    故选D.
    【点睛】
    本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.
    14.(2019·甘肃武威市·八年级期末)如图,在▱ABCD中, 对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).

    A.AE=CF B.DE=BF
    C. D.
    【答案】B
    【分析】
    根据平行四边形的性质以及平行四边形的判定定理即可作出判断.
    【详解】
    解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,
    若AE=CF,则OE=OF,
    ∴四边形DEBF是平行四边形;
    B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;
    C、∵在平行四边形ABCD中,OB=OD,AD∥BC,
    ∴∠ADB=∠CBD,
    若∠ADE=∠CBF,则∠EDB=∠FBO,
    ∴DE∥BF,
    则△DOE和△BOF中,,
    ∴△DOE≌△BOF,
    ∴DE=BF,
    ∴四边形DEBF是平行四边形.故选项正确;
    D、∵∠AED=∠CFB,
    ∴∠DEO=∠BFO,
    ∴DE∥BF,
    在△DOE和△BOF中,,
    ∴△DOE≌△BOF,
    ∴DE=BF,
    ∴四边形DEBF是平行四边形.故选项正确.
    故选B.

    【点睛】
    本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.
    Part3 与 三角形中位线 有关的易错题
    15.(2019·甘肃武威市·八年级期末)如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=(  )

    A.18 B.9
    C.6 D.条件不够,不能确定
    【答案】C
    【分析】
    因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.
    【详解】
    延长EP交AB于点G,延长DP交AC与点H.
    ∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.
    又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB6.
    故选C.

    【点睛】
    本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
    16.(2020·广东茂名市·八年级期末)如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于(   )

    A.2 B.3 C.4 D.6
    【答案】C
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD=BC=8,CD=AB=6,
    ∴∠F=∠DCF,
    ∵∠C平分线为CF,
    ∴∠FCB=∠DCF,
    ∴∠F=∠FCB,
    ∴BF=BC=8,
    同理:DE=CD=6,
    ∴AF=BF−AB=2,AE=AD−DE=2
    ∴AE+AF=4
    故选C
    17.(2021·山东东营市·八年级期末)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为(  )

    A. B.2 C. D.3
    【答案】C
    【分析】
    证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.
    【详解】
    解:∵BN平分∠ABC,BN⊥AE,
    ∴∠NBA=∠NBE,∠BNA=∠BNE,
    在△BNA和△BNE中,

    ∴△BNA≌△BNE,
    ∴BA=BE,
    ∴△BAE是等腰三角形,
    同理△CAD是等腰三角形,
    ∴点N是AE中点,点M是AD中点(三线合一),
    ∴MN是△ADE的中位线,
    ∵BE+CD=AB+AC=19-BC=19-7=12,
    ∴DE=BE+CD-BC=5,
    ∴MN=DE=.
    故选C.
    【点睛】
    本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    18.(2019·陕西宝鸡市·八年级期末)如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为(  )

    A.32 B.16 C.8 D.4
    【答案】C
    【分析】
    根据等腰三角形的性质和中位线的性质求解即可.
    【详解】
    ∵AD=AC
    ∴是等腰三角形
    ∵AE⊥CD

    ∴E是CD的中点
    ∵F是BC的中点
    ∴EF是△BCD的中位线

    故答案为:C.
    【点睛】
    本题考查了三角形的线段长问题,掌握等腰三角形的性质和中位线的性质是解题的关键.
    19.(2019·浙江杭州市·八年级期末)已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是(  )

    A.1<MN<5 B.1<MN≤5 C.<MN< D.<MN≤
    【答案】D
    【分析】
    当AB∥CD时,MN最短,利用中位线定理可得MN的最长值,作出辅助线,利用三角形中位线及三边关系可得MN的其他取值范围.
    【详解】
    连接BD,过M作MG∥AB,连接NG.
    ∵M是边AD的中点,AB=2,MG∥AB,
    ∴MG是△ABD的中位线,BG=GD,MG=AB=×2=1;
    ∵N是BC的中点,BG=GD,CD=3,
    ∴NG是△BCD的中位线,NG=CD=×3=,
    在△MNG中,由三角形三边关系可知MG-NG<MN<MG+NG,即-1<MN<+1,
    ∴<MN<,
    当MN=MG+NG,即MN=时,四边形ABCD是梯形,
    故线段MN长的取值范围是<MN≤.
    故选D.

    【点睛】
    此题主要考查了三角形的中位线,解答此题的关键是根据题意作出辅助线,利用三角形的中位线定理和三角形的三边关系求解.
    20.(2020·山东临沂市河东区八年级期末)如图,在中,分别是的中点,点在延长线上,添加一个条件使四边形为平行四边形,则这个条件是( )

    A. B. C. D.
    【答案】B
    【分析】
    利用三角形中位线定理得到,结合平行四边形的判定定理进行选择.
    【详解】
    ∵在中,分别是的中点,
    ∴是的中位线,
    ∴.
    A、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.
    B、根据可以判定,即,由“两组对边分别平行的四边形是平行四边形”得到四边形为平行四边形,故本选项正确.
    C、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.
    D、根据不能判定四边形为平行四边形,故本选项错误.
    故选B.
    【点睛】
    本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.
    21.(2019·五华县八年级期末)在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(   )

    A.5 B.7 C.9 D.11
    【答案】B
    【解析】
    试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.
    22.(2020·山东济南市·八年级期末)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(   )

    A.7 B.8 C.9 D.10
    【答案】B
    【分析】
    根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
    【详解】
    在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,
    ∴AC===10,
    ∵DE是△ABC的中位线,
    ∴DF∥BM,DE=BC=3,
    ∴∠EFC=∠FCM,
    ∵∠FCE=∠FCM,
    ∴∠EFC=∠ECF,
    ∴EC=EF=AC=5,
    ∴DF=DE+EF=3+5=8.
    故选B.

    23.(2019·山东济南市·八年级期末)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出( )

    A.1 B. C. D.
    【答案】C
    【分析】
    对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
    【详解】
    解:∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,
    ∴△A1B1C
    的面积为
    ∴四边形A1ABB1的面积=△ABC的面积-△A1B1C的面积

    ∴四边形A2A1B1B2的面积=的面积- 的面积


    ∴第n个四边形的面积


    故答案为:C
    【点睛】
    本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.
    24.(2020·广东佛山市·八年级期末)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
    ①线段MN的长;
    ②△PAB的周长;
    ③△PMN的面积;
    ④直线MN,AB之间的距离;
    ⑤∠APB的大小.
    其中会随点P的移动而变化的是( )

    A.②③ B.②⑤ C.①③④ D.④⑤
    【答案】B
    【解析】
    试题分析:
    ①、MN= AB,所以MN的长度不变;
    ②、周长C△PAB=(AB+PA+PB),变化;
    ③、面积S△PMN= S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
    ④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
    ⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
    故选B
    考点:动点问题,平行线间的距离处处相等,三角形的中位线
    Part4与 多边形的内角和与外角和 有关的易错题
    25.(2021·广东广州市·八年级期末)已知一个多边形的内角和等于900º,则这个多边形是( )
    A.五边形 B.六边形 C.七边形 D.八边形
    【答案】C
    【解析】
    试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=7.
    考点:多边形的内角和定理.
    26.(2019·枣庄市中区八年级期末)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是(  )

    A.100米 B.110米 C.120米 D.200米
    【答案】A
    【分析】
    根据多边形的外角和即可求出答案.
    【详解】
    解:∵360÷36=10,
    ∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.
    故选A.
    【点睛】
    本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.
    27.(2021·山东临沂市·八年级期末)若一个多边形的内角和为1080°,则这个多边形的边数为( )
    A.6 B.7 C.8 D.9
    【答案】C
    【解析】
    多边形内角和定理.
    【分析】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,
    解此方程即可求得答案:n=8.故选C.
    28.(2020·山西阳泉市·八年级期末)已知正多边形的一个外角为36°,则该正多边形的边数为( ).
    A.12 B.10 C.8 D.6
    【答案】B
    【分析】
    利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
    【详解】
    解:360°÷36°=10,所以这个正多边形是正十边形.
    故选B.
    【点睛】
    本题主要考查了多边形的外角和定理.是需要识记的内容.
    29.(2020·内蒙古包头市·八年级期末)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )
    A.108° B.90° C.72° D.60°
    【答案】C
    【分析】
    首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.
    【详解】
    解:设此多边形为n边形,
    根据题意得:180(n-2)=540,
    解得:n=5,
    ∴这个正多边形的每一个外角等于:=72°.
    故选C.
    【点睛】
    此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
    30.(2020·贵州铜仁市·八年级期末)一个多边形的内角和与外角和相等,则这个多边形是( )
    A.四边形 B.五边形 C.六边形 D.八边形
    【答案】A
    【详解】
    多边形的内角和外角性质.
    【分析】设此多边形是n边形,
    ∵多边形的外角和为360°,内角和为(n-2)180°,
    ∴(n-2)180=360,解得:n=4.
    ∴这个多边形是四边形.故选A.
    31.(2021·北京八年级期末)正十边形的外角和为( )
    A.180° B.360° C.720° D.1440°
    【答案】B
    【分析】
    根据多边的外角和定理进行选择.
    【详解】
    解:因为任意多边形的外角和都等于360°,
    所以正十边形的外角和等于360°,.
    故选B.
    【点睛】
    本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.
    32.(2020·内蒙古巴彦淖尔市·八年级期末)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是  
    A.8 B.9 C.10 D.12
    【答案】A
    【解析】
    试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
    解:设这个多边形的外角为x°,则内角为3x°,
    由题意得:x+3x=180,
    解得x=45,
    这个多边形的边数:360°÷45°=8,
    故选A.
    考点:多边形内角与外角.

    相关试卷

    初中数学北师大版八年级下册第五章 分式与分式方程综合与测试同步训练题: 这是一份初中数学北师大版八年级下册第五章 分式与分式方程综合与测试同步训练题,共14页。试卷主要包含了这两个条件缺一不可,约分等内容,欢迎下载使用。

    2020-2021学年第六章 平行四边形综合与测试巩固练习: 这是一份2020-2021学年第六章 平行四边形综合与测试巩固练习,共19页。试卷主要包含了已知等内容,欢迎下载使用。

    北师大版八年级下册第六章 平行四边形综合与测试课时练习: 这是一份北师大版八年级下册第六章 平行四边形综合与测试课时练习,共6页。试卷主要包含了已知等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题21 平行四边形 易错题之选择题(32题)--八年级数学下册同步易错题精讲精练(北师大版)(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map