2021高考数学二轮复习专题三跟踪训练3
展开专题跟踪训练(十六)
一、选择题
1.(2018·昆明模拟)在△ABC中,点D,E分别在边BC,AC上,且=2,=3,若=a,=b,则=( )
A.a+b B.a-b
C.-a-b D.-a+b
[解析] =+
=+
=(-)-
=--=-a-b,故选C.
[答案] C
2.(2018·吉林白城模拟)已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=( )
A. B.2 C.- D.-2
[解析] 由向量a=(2,3),b=(-1,2),得ma+nb=(2m-n,3m+2n),a-2b=(4,-1).由ma+nb与a-2b共线,得=,所以=-,故选C.
[答案] C
3.已知两个非零向量a与b的夹角为θ,则“a·b>0”是“θ为锐角”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[解析] 由a·b>0,可得到θ∈,不能得到θ∈;而由θ∈,可以得到a·b>0,故选B.
[答案] B
4.(2018·郑州一中高三测试)已知向量a,b均为单位向量,若它们的夹角为60°,则|a+3b|等于( )
A. B. C. D.4
[解析] 依题意得a·b=,|a+3b|==,故选C.
[答案] C
5.已知△ABC是边长为1的等边三角形,则(-2)·(3+4)=( )
A.- B.-
C.-6- D.-6+
[解析] (-2)·(3+4)=3·-62+4·-8·=3||·||·cos120°-6||2+4||·||cos120°-8||·||·cos120°=3×1×1×-6×12+4×1×1×-8×1×1×=--6-2+4=-,故选B.
[答案] B
6.(2018·河南中原名校联考)如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若=λ+μ(λ,μ为实数),则λ2+μ2=( )
A. B. C.1 D.
[解析] =+=+=+(+)=-,所以λ=,μ=-,故λ2+μ2=,故选A.
[答案] A
7.(2018·山西四校联考)如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,=3,F为AE的中点,则=( )
A.- B.-
C.-+ D.-+
[解析] 解法一:如图,取AB的中点G,连接DG、CG,则易知四边形DCBG为平行四边形,所以==-=-,∴=+=+=+=+,于是=-=-=-=-+,故选C.
解法二:=+=+
=-+
=-+
=-+++(++)
=-+,故选C.
[答案] C
8.(2018·河南郑州二模)已知平面向量a,b,c满足|a|=|b|=|c|=1,若a·b=,则(a+b)·(2b-c)的最小值为( )
A.-2 B.3- C.-1 D.0
[解析] 由|a|=|b|=1,a·b=,可得〈a,b〉=,令=a,=b,以的方向为x轴的正方向建立如图所示的平面直角坐标系,则a==(1,0),b==,设c==(cosθ,sinθ)(0≤θ<2π),则(a+b)·(2b-c)=2a·b-a·c+2b2-b·c=3-=3-sin,则(a+b)·(2b-c)的最小值为3-,故选B.
[答案] B
9.(2018·安徽江南十校联考)已知△ABC中,AB=6,AC=3,N是边BC上的点,且=2,O为△ABC的外心,则·的值为( )
A.8 B.10 C.18 D.9
[解析] 由于=2,则=+,取AB的中点为E,连接OE,由于O为△ABC的外心,则⊥,∴·=·=2=×62=18,同理可得·=2=×32=,所以·=·=·+·=×18+×=6+3=9,故选D.
[答案] D
10.(2018·山西太原模拟)已知△DEF的外接圆的圆心为O,半径R=4,如果++=0,且||=||,则向量在方向上的投影为( )
A.6 B.-6 C.2 D.-2
[解析] 由++=0得,=+.
∴DO经过EF的中点,∴DO⊥EF.
连接OF,∵||=||=||=4,
∴△DOF为等边三角形,∴∠ODF=60°.∴∠DFE=30°,且EF=4×sin60°×2=4.
∴向量在方向上的投影为||·cos〈,〉=4cos150°=-6,故选B.
[答案] B
11.(2018·湖北黄冈二模)已知平面向量a,b,c满足|a|=|b|=1,a⊥(a-2b),(c-2a)·(c-b)=0,则|c|的最大值与最小值的和为( )
A.0 B. C. D.
[解析] ∵a⊥(a-2b),∴a·(a-2b)=0,即a2=2a·b,又|a|=|b|=1,∴a·b=,a与b的夹角为60°.
设=a,=b,=c,以O为坐标原点,的方向为x轴正方向建立如图所示的平面直角坐标系,
则a=,b=(1,0).
设c=(x,y),则c-2a=(x-1,y-),c-b=(x-1,y).
又∵(c-2a)·(c-b)=0,∴(x-1)2+y(y-)=0.
即(x-1)2+2=,
∴点C的轨迹是以点M为圆心,为半径的圆.
又|c|=表示圆M上的点与原点O(0,0)之间的距离,所以|c|max=|OM|+,|c|min=|OM|-,
∴|c|max+|c|min=2|OM|=2×
=,故选D.
[答案] D
12.(2018·广东七校联考)在等腰直角△ABC中,∠ABC=90°,AB=BC=2,M,N为AC边上的两个动点(M,N不与A,C重合),且满足||=,则·的取值范围为( )
A. B.
C. D.
[解析] 不妨设点M靠近点A,点N靠近点C,以等腰直角三角形ABC的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,
则B(0,0),A(0,2),C(2,0),线段AC的方程为x+y-2=0(0≤x≤2).设M(a,2-a),N(a+1,1-a)(由题意可知0<a<1),∴=(a,2-a),=(a+1,1-a),∴·=a(a+1)+(2-a)(1-a)=2a2-2a+2=22+,∵0<a<1,∴由二次函数的知识可得·∈,故选C.
[答案] C
二、填空题
13.(2017·全国卷Ⅰ)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
[解析] 由题意知a·b=|a|·|b|cos60°=2×1×=1,则|a+2b|2=(a+2b)2=|a|2+4|b|2+4a·b=4+4+4=12.所以|a+2b|=2.
[答案] 2
14.(2017·山东卷)已知e1,e2是互相垂直的单位向量,若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________.
[解析] ∵(e1-e2)·(e1+λe2)=e+λe1·e2-e1·e2-λe=-λ,|e1-e2|===2,|e1+λe2|===,
∴-λ=2××cos60°=,解得λ=.
[答案]
15.在△ABC中,点D在线段BC的延长线上,且=3,点O在线段CD上(与点C、D不重合),若=x+(1-x),则x的取值范围是________.
[解析] 依题意,设=λ,其中1<λ<,则有 =+=+λ=+λ(-)=(1-λ)+λ.
又=x+(1-x),且,不共线,于是有x=1-λ,由λ∈,知x∈,即x的取值范围是.
[答案]
16.(2018·河北衡水二中模拟)已知在直角梯形ABCD中,AB=AD=2CD=2,AB∥CD,∠ADC=90°,若点M在线段AC上,则|+|的最小值为________.
[解析] 建立如图所示的平面直角坐标系.
则A(0,0),B(2,0),C(1,2),D(0,2),设=λ(0≤λ≤1),则M(λ,2λ),故=(-λ,2-2λ),=(2-λ,-2λ),则+=(2-2λ,2-4λ),|+|==,当λ=时,|+|取得最小值为.
[答案]
2021高考数学二轮复习专题七跟踪训练2: 这是一份2021高考数学二轮复习专题七跟踪训练2,共9页。试卷主要包含了以下四个命题中是真命题的为等内容,欢迎下载使用。
2021高考数学二轮复习专题六跟踪训练3: 这是一份2021高考数学二轮复习专题六跟踪训练3,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021高考数学二轮复习专题三跟踪训练1: 这是一份2021高考数学二轮复习专题三跟踪训练1,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。