人教版5.2.2 平行线的判定教案
展开课题
5.2.2平行线的判定(二)
课型
预习课
教法
讲练结合
课时
1
教
学
目
标
1、掌握直线平行的条件,并能解决一些简单的问题;
2、初步了解推理论证的方法,会正确的书写简单的推理过程。
教学重点
会正确的书写简单的推理过程。
教学难点
直线平行的条件及运用
教学准备
课件、同步活页
引入课题
我们学习过哪些判断两直线平行的方法?
(1)平行线的定义:在同一平面内不相交的两条直线平行。
(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。
(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
平行判定定理
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说:同位角相等,两条直线平行
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说:内错角相等,两直线平行.
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
简单地说:同旁内角互补,两直线平行.
讲授新课
在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
解:这两条直线平行。
∵b⊥ac⊥a(已知)
∴∠1=∠2=90°(垂直的定义)
∴b∥c(同位角相等,两直线平行)
你还能用其它方法说明b∥c吗?
方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明.
(1)(2)
注意:本例也是一个有用的结论。
例2如图,点B在DC上,BE平分∠ABD,∠DBE=∠A,则BE∥AC,请说明理由。
A
B
C
D
E
分析:由BE平分∠ABD我们可以知道什么?联系∠DBE=∠A,我们又可以知道什么?由此能得出BE∥AC吗?为什么?
解:∵BE平分∠ABD
∴∠ABE=∠DBE(角平分线的定义)
又∠DBE=∠A
∴∠ABE=∠A(等量代换)
∴BE∥AC(内错角相等,两直线平行)
注意:用符号语言书写证明过程时,要步步有据。
随堂范例
练习1:由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两直线平行?由∠D+∠ BAD=180°,可判断哪两条直线平行?
答:∵∠DCE=∠D,
∴AD∥BC(BE) (内错角相等,两直线平行)
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
归纳总结
平行判定定理
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说:同位角相等,两条直线平行
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说:内错角相等,两直线平行.
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
简单地说:同旁内角互补,两直线平行.
布置作业
活页同步练习、复习本章节课程、预习下一章节
教后记
人教版七年级下册5.2.2 平行线的判定教案及反思: 这是一份人教版七年级下册5.2.2 平行线的判定教案及反思,共4页。教案主要包含了教学目标,教学重点,教学过程,教学反思等内容,欢迎下载使用。
初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定教学设计: 这是一份初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定教学设计,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点,技巧点拨等内容,欢迎下载使用。
初中数学人教版七年级下册5.2.2 平行线的判定教学设计: 这是一份初中数学人教版七年级下册5.2.2 平行线的判定教学设计,共3页。