2020年广东省东莞市中考数学真题(含答案)
展开1.(3分)9的相反数是( )
A.﹣9B.9C.D.﹣
2.(3分)一组数据2,4,3,5,2的中位数是( )
A.5B.3.5C.3D.2.5
3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( )
A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)
4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )
A.4B.5C.6D.7
5.(3分)若式子在实数范围内有意义,则x的取值范围是( )
A.x≠2B.x≥2C.x≤2D.x≠﹣2
6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为( )
A.8B.2C.16D.4
7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )
A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3
8.(3分)不等式组的解集为( )
A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1
9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )
A.1B.C.D.2
10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:
①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,
正确的有( )
A.4个B.3个C.2个D.1个
二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.(4分)分解因式:xy﹣x= .
12.(4分)如果单项式3xmy与﹣5x3yn是同类项,那么m+n= .
13.(4分)若+|b+1|=0,则(a+b)2020= .
14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为 .
15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 .
16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.
17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 .
三、解答题(一)(本大题3小题,每小题6分,共18分)
18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.
19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:
(1)求x的值;
(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?
20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.(8分)已知关于x,y的方程组与的解相同.
(1)求a,b的值;
(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.
22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.
(1)求证:直线CD与⊙O相切;
(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.
23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.
(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
五、解答题(三)(本大题2小题,每小题10分,共20分)
24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
(1)填空:k= ;
(2)求△BDF的面积;
(3)求证:四边形BDFG为平行四边形.
25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.
(1)求b,c的值;
(2)求直线BD的函数解析式;
(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.
2020年广东省中考数学试卷
参考答案与试题解析
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.(3分)9的相反数是( )
A.﹣9B.9C.D.﹣
【解答】解:9的相反数是﹣9,
故选:A.
2.(3分)一组数据2,4,3,5,2的中位数是( )
A.5B.3.5C.3D.2.5
【解答】解:将数据由小到大排列得:2,2,3,4,5,
∵数据个数为奇数,最中间的数是3,
∴这组数据的中位数是3.
故选:C.
3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( )
A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)
【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).
故选:D.
4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )
A.4B.5C.6D.7
【解答】解:设多边形的边数是n,则
(n﹣2)•180°=540°,
解得n=5.
故选:B.
5.(3分)若式子在实数范围内有意义,则x的取值范围是( )
A.x≠2B.x≥2C.x≤2D.x≠﹣2
【解答】解:∵在实数范围内有意义,
∴2x﹣4≥0,
解得:x≥2,
∴x的取值范围是:x≥2.
故选:B.
6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为( )
A.8B.2C.16D.4
【解答】解:∵D、E、F分别为△ABC三边的中点,
∴DE、DF、EF都是△ABC的中位线,
∴DF=AC,DE=BC,EF=AC,
故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.
故选:A.
7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )
A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3
【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),
∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),
∴所得的图象解析式为y=(x﹣2)2+2.
故选:C.
8.(3分)不等式组的解集为( )
A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1
【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,
解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,
则不等式组的解集为﹣1≤x≤1,
故选:D.
9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )
A.1B.C.D.2
【解答】解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3﹣x,
∴2(3﹣x)=x,
解得x=2.
故选:D.
10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:
①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,
正确的有( )
A.4个B.3个C.2个D.1个
【解答】解:由抛物线的开口向下可得:a<0,
根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc<0,故①错误;
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,故②正确;
∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,
由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,
∴4a﹣2×(﹣2a)+c<0,
即8a+c<0,故③正确;
由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,
两式相加得,5a+b+2c>0,故④正确;
∴结论正确的是②③④3个,
故选:B.
二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.(4分)分解因式:xy﹣x= x(y﹣1) .
【解答】解:xy﹣x=x(y﹣1).
故答案为:x(y﹣1).
12.(4分)如果单项式3xmy与﹣5x3yn是同类项,那么m+n= 4 .
【解答】解:∵单项式3xmy与﹣5x3yn是同类项,
∴m=3,n=1,
∴m+n=3+1=4.
故答案为:4.
13.(4分)若+|b+1|=0,则(a+b)2020= 1 .
【解答】解:∵+|b+1|=0,
∴a﹣2=0且b+1=0,
解得,a=2,b=﹣1,
∴(a+b)2020=(2﹣1)2020=1,
故答案为:1.
14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为 7 .
【解答】解:∵x=5﹣y,
∴x+y=5,
当x+y=5,xy=2时,
原式=3(x+y)﹣4xy
=3×5﹣4×2
=15﹣8
=7,
故答案为:7.
15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 45° .
【解答】解:∵四边形ABCD是菱形,
∴AD=AB,
∴∠ABD=∠ADB=(180°﹣∠A)=75°,
由作图可知,EA=EB,
∴∠ABE=∠A=30°,
∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,
故答案为45°.
16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.
【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,
则扇形的弧长为:,
而扇形的弧长相当于围成圆锥的底面周长,因此有:
2πr=,
解得,r=,
故答案为:.
17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 2﹣2 .
【解答】解:如图,连接BE,BD.
由题意BD==2,
∵∠MBN=90°,MN=4,EM=NE,
∴BE=MN=2,
∴点E的运动轨迹是以B为圆心,2为半径的圆,
∴当点E落在线段BD上时,DE的值最小,
∴DE的最小值为2﹣2.
故答案为2﹣2.
三、解答题(一)(本大题3小题,每小题6分,共18分)
18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.
【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,
=x2+2xy+y2+x2﹣y2﹣2x2
=2xy,
当x=,y=时,
原式=2××=2.
19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:
(1)求x的值;
(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?
【解答】解:(1)x=120﹣(24+72+18)=6;
(2)1800×=1440(人),
答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.
20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.
【解答】证明:∵∠ABE=∠ACD,
∴∠DBF=∠ECF,
在△BDF和△CEF中,,
∴△BDF≌△CEF(AAS),
∴BF=CF,DF=EF,
∴BF+EF=CF+DF,
即BE=CD,
在△ABE和△ACD中,,
∴△ABE≌△ACD(AAS),
∴AB=AC,
∴△ABC是等腰三角形.
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.(8分)已知关于x,y的方程组与的解相同.
(1)求a,b的值;
(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.
【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,
解得,,代入原方程组得,a=﹣4,b=12;
(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,
解得,x1=x2=2,
又∵(2)2+(2)2=(2)2,
∴以2、2、2为边的三角形是等腰直角三角形.
22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.
(1)求证:直线CD与⊙O相切;
(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.
【解答】(1)证明:作OE⊥CD于E,如图1所示:
则∠OEC=90°,
∵AD∥BC,∠DAB=90°,
∴∠OBC=180°﹣∠DAB=90°,
∴∠OEC=∠OBC,
∵CO平分∠BCD,
∴∠OCE=∠OCB,
在△OCE和△OCB中,,
∴△OCE≌△OCB(AAS),
∴OE=OB,
又∵OE⊥CD,
∴直线CD与⊙O相切;
(2)解:作DF⊥BC于F,连接BE,如图所示:
则四边形ABFD是矩形,
∴AB=DF,BF=AD=1,
∴CF=BC﹣BF=2﹣1=1,
∵AD∥BC,∠DAB=90°,
∴AD⊥AB,BC⊥AB,
∴AD、BC是⊙O的切线,
由(1)得:CD是⊙O的切线,
∴ED=AD=1,EC=BC=2,
∴CD=ED+EC=3,
∴DF===2,
∴AB=DF=2,
∴OB=,
∵CO平分∠BCD,
∴CO⊥BE,
∴∠BCH+∠CBH=∠CBH+∠ABE=90°,
∴∠ABE=∠BCH,
∵∠APE=∠ABE,
∴∠APE=∠BCH,
∴tan∠APE=tan∠BCH==.
23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.
(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,
根据题意得:,
解得:x=3,
经检验x=3是原方程的解,
所以3+2=5,
答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;
(2)设建A摊位a个,则建B摊位(90﹣a)个,
由题意得:90﹣a≥3a,
解得a≤22.5,
∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,
∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,
此时最大费用为:22×40×5+30×(90﹣22)×3=10520,
答:建造这90个摊位的最大费用是10520元.
五、解答题(三)(本大题2小题,每小题10分,共20分)
24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
(1)填空:k= 2 ;
(2)求△BDF的面积;
(3)求证:四边形BDFG为平行四边形.
【解答】解:(1)设点B(s,t),st=8,则点M(s,t),
则k=s•t=st=2,
故答案为2;
(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;
(3)设点D(m,),则点B(4m,),
∵点G与点O关于点C对称,故点G(8m,0),
则点E(4m,),
设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,
故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),
故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,
则FG∥BD,故四边形BDFG为平行四边形.
25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.
(1)求b,c的值;
(2)求直线BD的函数解析式;
(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.
【解答】解:(1)∵BO=3AO=3,
∴点B(3,0),点A(﹣1,0),
∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,
∴b=﹣,c=﹣;
(2)如图1,过点D作DE⊥AB于E,
∴CO∥DE,
∴,
∵BC=CD,BO=3,
∴=,
∴OE=,
∴点D横坐标为﹣,
∴点D坐标(﹣,+1),
设直线BD的函数解析式为:y=kx+b,
由题意可得:,
解得:,
∴直线BD的函数解析式为y=﹣x+;
(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),
∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,
∵直线BD:y=﹣x+与y轴交于点C,
∴点C(0,),
∴OC=,
∵tan∠COB==,
∴∠COB=30°,
如图2,过点A作AK⊥BD于K,
∴AK=AB=2,
∴DK===2,
∴DK=AK,
∴∠ADB=45°,
如图,设对称轴与x轴的交点为N,即点N(1,0),
若∠CBO=∠PBO=30°,
∴BN=PN=2,BP=2PN,
∴PN=,BP=,
当△BAD∽△BPQ,
∴,
∴BQ==2+,
∴点Q(1﹣,0);
当△BAD∽△BQP,
∴,
∴BQ==4﹣,
∴点Q(﹣1+,0);
若∠PBO=∠ADB=45°,
∴BN=PN=2,BP=BN=2,
当△BAD∽△BPQ,
∴,
∴,
∴BQ=2+2
∴点Q(1﹣2,0);
当△BAD∽△PQB,
∴,
∴BQ==2﹣2,
∴点Q(5﹣2,0);
综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2020/7/28 10:44:07;用户:柯瑞;邮箱:ainixiake00@163.cm;学号:500557等级
非常了解
比较了解
基本了解
不太了解
人数(人)
24
72
18
x
等级
非常了解
比较了解
基本了解
不太了解
人数(人)
24
72
18
x
2021年广东省东莞市中考数学真题及答案: 这是一份2021年广东省东莞市中考数学真题及答案,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年广东省中考数学真题(含答案解析): 这是一份2023年广东省中考数学真题(含答案解析),共20页。试卷主要包含了186×105B, 计算3a+2a的结果为, 某学校开设了劳动教育课程等内容,欢迎下载使用。
2023年广东省数学中考真题试题(含答案): 这是一份2023年广东省数学中考真题试题(含答案),共11页。试卷主要包含了 考生必须保持答题卡的整洁, 计算的结果为, 某学校开设了劳动教育课程, 一元一次不等式组,的解集为, 如图,AB是⊙O的直径,,则等内容,欢迎下载使用。