![第21讲 圆的基本性质第1页](http://img-preview.51jiaoxi.com/2/3/6008388/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:中考数学知识点合集 分章节
- 第24讲 平移、对称、旋转与位似 其他 7 次下载
- 第25讲 视图与投影 其他 6 次下载
- 第22讲 与圆有关的位置关系 其他 6 次下载
- 第23讲 与圆有关的计算 其他 6 次下载
- 第19讲 多边形与平行四边形 其他 6 次下载
第21讲 圆的基本性质
展开
这是一份第21讲 圆的基本性质,文件包含第7课地球水的星球pptx、第7课地球水的星球docx、地球仪mp4、水是生命存在的可能mp4等4份课件配套教学资源,其中PPT共20页, 欢迎下载使用。
知识清单梳理
知识点一:圆的有关概念
关键点拨与对应举例
1.与圆有关的概念和性质
(1)圆:平面上到定点的距离等于定长的所有点组成
的图形.如图所示的圆记做⊙O.
(2)弦与直径:连接圆上任意两点的线段叫做弦,过
圆心的弦叫做直径,直径是圆内最长的弦.
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的
弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角.
(5)圆周角:顶点在圆上,并且两边都与圆还有一个
交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;
(2)3点确定一个圆,经过1点或2点的圆有无数个.
(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.
知识点二 :垂径定理及其推论
2.垂径定理及其推论
定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
推论
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
延伸
根据圆的对称性,如图所示,在以下五条结论中:
弧AC=弧BC;
②弧AD=弧BD;
③AE=BE;
④AB⊥CD;⑤CD是直径.
只要满足其中两个,另外三个结论一定成立,即推二知三.
知识点三 :圆心角、弧、弦的关系
3.圆心角、弧、弦的关系
定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.
推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
知识点四 :圆周角定理及其推论
4.圆周角定理及其推论
(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,
∠A=1/2∠O.
图a 图b 图c
( 2 )推论:
在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C.
直径所对的圆周角是直角.如图c,∠C=90°.
圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠ADC=180°.
在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.
例:如图,AB是⊙O的直径,C,D是⊙O上两点,∠BAC=40°,则∠D的度数为130°.
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)