- 学案5.1.2 垂线 1 学案 0 次下载
- 学案5.1.1 相交线 2 学案 0 次下载
- 学案5.1.3 同位角、内错角、同旁内角 学案 0 次下载
- 学案5.1.1 相交线 1 学案 0 次下载
- 学案5.1.2 垂线 2 学案 0 次下载
人教版七年级下册5.3.1 平行线的性质第1课时学案设计
展开教学流程安排
教学过程设计
【教学过程】
一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.
试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?
试验2:学生试验(发印制好的平行线纸单).
(1)要求学生任意画一条直线c与直线a、b相交;
(2)选一对同位角来度量,看看这对同位角是否相等.
学生归纳:两条平行线被第三条直线所截,同位角相等.
二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识.
活动1
问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).
教师活动设计:引导学生讨论并回答.
学生口答,教师板书,并要求学生学习推理的书写格式.
活动2
总结平行线的性质.
性质2:两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
性质3:两条平行直线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
活动3
如何理解并记忆性质2、3,谈谈你的看法!
a
b
3
c
1
2
4
(1)性质2、3分别已知什么?得出什么?
(2)它与前面学习的平行线的判定有什么区别?
(3)性质2、3的应用格式.
∵a//b(已知)
∴∠3=∠2(两直线平行,内错角相等).
∵ a//b(已知)
∴∠2+∠4=180°(两直线平行,同旁内角互补).
三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性
活动4
解决问题.
问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)
A
D
B
C
学生活动设计:
学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.
〔解答〕因为ABCD是梯形.
所以AD//BC.
所以∠A+∠B=180°,∠D+∠C=180°.
又∠A=115°,∠D=100°.
所以∠B=65°,∠C=80°.
问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角B等于142°,第二次拐的角C是多少度?为什么?
学生活动设计:
学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°
问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.
(1)∠1、∠3的大小有什么关系?∠2与∠4呢?
(2)反射光线BC与EF也平行吗?
学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC∥EF.
教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.
〔解答〕略.
问题4:如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?说说你的看法.
学生活动设计:
由于有平行线,所以要用平行的知识,而∠B、∠D与∠DEB这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E作EF//AB,则由AB//CD得到EF//CD,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B=∠BEF、∠D =∠DEF,因此∠B+∠D=∠BEF+∠DEF=∠DEB.
教师活动设计:
在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.
〔解答〕过点E作EF//AB.
所以∠B=∠BEF.
因为AB//CD.
所以EF//CD.
所以∠D=∠DEF.
所以∠B+∠D=∠BEF+∠DEF=∠DEB.
即∠B+∠D=∠DEB.
变式思考:
如图,AB//CD,探索∠B、∠D与∠BED的大小关系(∠B+∠D+∠DEB=360°).
四、小结与作业.
小结:
1.平行线的三个性质:
两直线平行,同位角相等.
两直线平行,内错角相等.
两直线平行,同旁内角互补.
2.平行线的性质与平行线的判定有什么区别?
判定:已知角的关系得平行的关系.证平行,用判定.
性质:已知平行的关系得角的关系.知平行,用性质.
作业:习题5.3.
教
学
目
标
知识技能
(1)掌握平行线的三个性质,能够进行简单的推理;
(2)初步理解命题的含义,能够辨别简单命题的题设和结论;
数学思考
在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.
解决问题
使学生能够顺利解决与平行线性质相关的计算和推理问题.
情感态度
让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度.
重点
平行线的三个性质的探索.
难点
平行线三个性质的应用.
活动流程图
活动内容和目的
试验
活动1 问题讨论
活动2 总结平行线的性质
活动3 对性质的理解
活动4 解决问题
小结与作业
通过两个试验,初步感受两直线平行,同位角相等的事实.
通过问题,让学生自主讨论平行线的性质.
师生对平行线的性质共同总结.
拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性.
复习巩固.
初中数学人教版七年级下册5.3.1 平行线的性质学案: 这是一份初中数学人教版七年级下册5.3.1 平行线的性质学案,共1页。学案主要包含了课堂实战,课堂小测等内容,欢迎下载使用。
初中数学人教版七年级下册5.3.1 平行线的性质导学案及答案: 这是一份初中数学人教版七年级下册5.3.1 平行线的性质导学案及答案,共1页。学案主要包含了复习引入,课堂练习等内容,欢迎下载使用。
初中人教版第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质第1课时学案: 这是一份初中人教版第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质第1课时学案,共4页。学案主要包含了自学指导提示等内容,欢迎下载使用。