2020-2021学年浙江省杭州市三月份中考数学模拟卷2(原卷版+解析)
展开2020-2021学年浙江省杭州市三月份中考数学模拟卷2
学校:___________姓名:___________班级:___________考号:___________
一、单选题(本题共10小题,每小题3分,共30分)
1.下列运算结果为正数的是( )
A. B. C. D.
2.下列变形是因式分解且正确的是( )
A. B.
C. D.
3.我国元朝朱世杰所著的《算学启蒙》(年)记载:良马日行二百四十里,驽马日行一百五十里,驽马现行六日,问良马几何追及之.翻译为:跑的快的马每天走里,跑的慢的马每天走里,慢马先走天,快马追上慢马的时间为( )
A.天 B.天 C.天 D.天
4.在Rt△ABC中,∠C=90°,若sinA=, 则tanB=( )
A. B. C. D.
5.(本题3分)若,则下列不等式一定成立的是( )
A. B. C. D.
6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )
A. B. C. D.
7.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是( )
A.本次抽样调查的样本容量是5000
B.扇形图中的m为10%
C.样本中选择公共交通出行的有2500人
D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人
8.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣2
9.如图,抛物线与x轴交于点A、B,把抛物线在x轴及其下方的部分记作,将向左平移得到,与x轴交于点B、D,若直线与、共有3个不同的交点,则m的取值范围是
A. B.
C. D.
10.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是( )
A.2 B. C. D.
二、填空题(本题共6小题,每小题4分,共24分)
11.若式子有意义,则x的取值范围是______.
12.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度
13.若mn=m+3,则2mn+3m-5nm+10= __________.
14.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是______.(结果保留)
15.不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.
16.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为____.
三、解答题(本题共7题,共66分)
17.(本题6分)某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.
(1)试用关于x的式子分情况表示该乘客的付费.
(2)如果该乘客坐了8千米,应付费多少元?
(3)如果该乘客付费26.2元,他坐了多少千米?
18.(本题8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
19.(本题8分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
20.(本题10分)如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
21.(本题10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF 的面积.
22.(本题12分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
23.(本题12分)如图,已知是的直径,切于,,,垂足分别为,.
求证:平分;
若,求证:为等边三角形;
若,,的半径为,且,是关于的方程的两根,求的值.
2020-2021学年浙江省杭州市三月份中考数学模拟卷2
学校:___________姓名:___________班级:___________考号:___________
一、单选题(本题共10小题,每小题3分,共30分)
1.下列运算结果为正数的是( )
A. B. C. D.
【答案】C
解:A. =-4<0,故错误;
B. =0,故错误;
C. =12>0,故正确;
D. =-4<0,故错误;
故选C.
2.下列变形是因式分解且正确的是( )
A. B.
C. D.
【答案】C
解:A、,是整式的乘法,故此选项错误;
B、,右边不是积的形式,故此选项错误;
C、,故此选项正确;
D、,故此选项错误;
故选:C.
3.我国元朝朱世杰所著的《算学启蒙》(年)记载:良马日行二百四十里,驽马日行一百五十里,驽马现行六日,问良马几何追及之.翻译为:跑的快的马每天走里,跑的慢的马每天走里,慢马先走天,快马追上慢马的时间为( )
A.天 B.天 C.天 D.天
【答案】A
解:设快马天可以追上慢马,由题意得
,
解得:.
所以,快马追上慢马的时间为10天,
故选:A.
4.在Rt△ABC中,∠C=90°,若sinA=, 则tanB=( )
A. B. C. D.
【答案】D
解:在Rt△ABC中,∠C=90°,sinA=,设a=2m,则c=3m.
由勾股定理得:b=m.
根据三角函数的定义可得:tanB=.
故选:D.
5.若,则下列不等式一定成立的是( )
A. B. C. D.
【答案】C
解:A选项,不等式两边同时减去3,不等号应该不变,不成立;
B选项,不等式两边同时加上1,不等号应该不变,不成立;
C选项,不等式两边同时除以5,不等号应该不变,成立;
D选项,不等式两边同时乘以,不等号应该改变,不成立.
故选:C.
6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )
A. B. C. D.
【答案】B
【解析】
∵正比例函数y=kx(k≠0)的图像经过第二、四象限,
∴k<0,
∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.
故选B.
7.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是( )
A.本次抽样调查的样本容量是5000
B.扇形图中的m为10%
C.样本中选择公共交通出行的有2500人
D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人
【答案】D
【详解】A、本次抽样调查的样本容量是=5000,正确;
B、扇形图中的m为10%,正确;
C、样本中选择公共交通出行的有5000×50%=2500人,正确;
D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,
故选D.
8.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣2
【答案】D
解:∵y=x2−4x+2=(x−2)2−2,
∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,
当x=−1时,有最大值为y=9−2=7.
故选D.
9.如图,抛物线与x轴交于点A、B,把抛物线在x轴及其下方的部分记作,将向左平移得到,与x轴交于点B、D,若直线与、共有3个不同的交点,则m的取值范围是
A. B. C. D.
【答案】C
解:抛物线与x轴交于点A、B,
∴=0,
∴x1=5,x2=9,
,
抛物线向左平移4个单位长度后的解析式,
当直线过B点,有2个交点,
,
,
当直线与抛物线相切时,有2个交点,
,
,
相切,
,
,
如图,
若直线与、共有3个不同的交点,
--,
故选C.
10.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是( )
A.2 B. C. D.
【答案】B
解:连接OD
∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,
∴OD⊥AC
在Rt△AOD中,∵∠A=30°,AD=2,
∴OD=OB=2,AO=4,
∴∠ODB=∠OBD,又∵BD平分∠ABC,
∴∠OBD=∠CBD,
∴∠ODB=∠CBD,
∴OD∥CB,
∴,即,
∴CD=.
故选B.
二、填空题(本题共6小题,每小题4分,共24分)
11.若式子有意义,则x的取值范围是______.
【答案】x>.
解:依题意得:2x+3>0.解得x>.故答案为x>.
12.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度
【答案】80.
解:∵AB∥CD,∠1=45°,
∴∠C=∠1=45°.
∵∠2=35°,
∴∠3=∠2+∠C=35°+45°=80°.
故答案为80.
13.若mn=m+3,则2mn+3m-5nm+10= __________.
【答案】1
解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,故答案为1.
14.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是______.(结果保留)
【答案】-1
解:延长DC,CB交⊙O于M,N,
则图中阴影部分的面积=×(S圆O−S正方形ABCD)=×(4π−4)=π−1,
故答案为π−1.
15.不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.
【答案】
解:∵不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,
∴从袋子中随机取出1个球,则它是绿球的概率是.
故答案为:.
16.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为____.
【答案】
解:根据勾股定理可求得AB=A′B′=,根据旋转不变性,可知∠MCM′=90°,然后根据直角三角形斜边上的中线等于斜边的一半,可知CM=AB= ,CM′=,所以再次根据勾股定理可求得MN=.
故答案为:
三、解答题(本题共7题,共66分)
17.(本题6分)某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.
(1)试用关于x的式子分情况表示该乘客的付费.
(2)如果该乘客坐了8千米,应付费多少元?
(3)如果该乘客付费26.2元,他坐了多少千米?
【答案】(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.
解:(1)当行程不超过3千米即x≤3时时,收费10元;
当行程超过3千米即x>3时,收费为:10+(x﹣3)×1.8=1.8x+4.6(元).
(2)当x=8时,1.8x+4.6=1.8×8+4.6=19(元).
答:乘客坐了8千米,应付费19元;
(3)设他坐了x千米,
由题意得:10+(x﹣3)×1.8=26.2,
解得x=12.
答:他乘坐了12千米.
18.(本题8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
【答案】(Ⅰ)40,25;(Ⅱ)平均数是1.5,众数为1.5,中位数为1.5;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为720.
解:(Ⅰ)本次接受调查的初中学生人数为:4+8+15+10+3=40(人),
m=100×=25.
故答案是:40,25;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.5.
∵在这组数据中,1.5出现了15次,出现的次数最多,
∴这组数据的众数为1.5.
∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,
∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数约占90%.有.
∴该校800名初中学生中,每天在校体育活动时间大于1h的学生人数约为720.
19.(本题8分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
【答案】(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
【详解】(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP;
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BD=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
20.(本题10分)如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
【答案】(1)或;(2),;(3)
解:(1)观察图象可知当或,k1x+b>;
(2)把代入,得,
∴,
∵点在上,∴,
∴,
把,代入得
,解得,
∴;
(3)设与轴交于点,
∵点在直线上,∴,
,
又,
∴,,
又,∴点在第一象限,
∴,
又,∴,解得,
把代入,得,
∴.
21.(本题10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF 的面积.
【答案】(1)证明详见解析;(2)证明详见解析;(3)10.
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=10.
22.(本题12分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
详解:(1)依题意得:,解得:,
∴抛物线的解析式为.
∵对称轴为,且抛物线经过,
∴把、分别代入直线,
得,解之得:,
∴直线的解析式为.
(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,
∴.即当点到点的距离与到点的距离之和最小时的坐标为.
(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).
(3)设,又,,
∴,,,
①若点为直角顶点,则,即:解得:,
②若点为直角顶点,则,即:解得:,
③若点为直角顶点,则,即:解得:
,.
综上所述的坐标为或或或.
23.(本题12分)如图,已知是的直径,切于,,,垂足分别为,.
求证:平分;
若,求证:为等边三角形;
若,,的半径为,且,是关于的方程的两根,求的值.
【答案】(1)详见解析;(2)详见解析;(3).
解:证明:延长与圆相交于,连接,
∵,
∴.
∴.
∴,.
∴,平分.
证明:∵,
∴.
∵是的外角,
∴.
又∵,,
∴,.
∵是等边三角形,,
∴.
∵平分,
∴.
∴.
又∵,
∴.
∴是的平分线.
∵,
∴,,.
∴.
又∵,
∴.
即为等边三角形;
解:∵,,的半径为,
∴在中,
即①
∵,是关于的方程的两根
∴, ②
∴ ③
把①②代入③得,解得或(舍去)
故.
2023年浙江省杭州市余杭区星桥中学中考数学模拟预测题(原卷版+解析版): 这是一份2023年浙江省杭州市余杭区星桥中学中考数学模拟预测题(原卷版+解析版),文件包含2023年浙江省杭州市余杭区星桥中学中考数学模拟预测题原卷版docx、2023年浙江省杭州市余杭区星桥中学中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
2023年浙江省杭州市余杭区树兰中学中考数学模拟预测题(原卷版+解析版): 这是一份2023年浙江省杭州市余杭区树兰中学中考数学模拟预测题(原卷版+解析版),文件包含2023年浙江省杭州市余杭区树兰中学中考数学模拟预测题原卷版docx、2023年浙江省杭州市余杭区树兰中学中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
浙江省杭州市2020-2021学年度中考数学模拟卷1(原卷版+解析版): 这是一份浙江省杭州市2020-2021学年度中考数学模拟卷1(原卷版+解析版),文件包含2020-2021学年浙江省杭州市三月份中考数学模拟卷1解析版docx、2020-2021学年浙江省杭州市三月份中考数学模拟卷1原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。