|试卷下载
搜索
    上传资料 赚现金
    2020年四川省乐山市中考数学真题(含答案)
    立即下载
    加入资料篮
    2020年四川省乐山市中考数学真题(含答案)01
    2020年四川省乐山市中考数学真题(含答案)02
    2020年四川省乐山市中考数学真题(含答案)03
    还剩16页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年四川省乐山市中考数学真题(含答案)

    展开
    这是一份2020年四川省乐山市中考数学真题(含答案),共19页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    1.(3分)的倒数是( )
    A.﹣B.C.﹣2D.2
    2.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )
    A.1100B.1000C.900D.110
    3.(3分)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=( )
    A.10°B.20°C.30°D.40°
    4.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是( )
    A.4B.﹣4或10C.﹣10D.4或﹣10
    5.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为( )
    A.9+2B.9+C.7+2D.8
    6.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是( )
    A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4
    7.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是( )
    A.B.
    C.D.
    8.(3分)已知3m=4,32m﹣4n=2.若9n=x,则x的值为( )
    A.8B.4C.2D.
    9.(3分)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为( )
    A.B.C.D.π
    10.(3分)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为( )
    A.﹣B.﹣C.﹣2D.﹣
    二、填空题:本大题共6个小题,每小题3分,共18分.
    11.(3分)用“>”或“<”符号填空:﹣7 ﹣9.
    12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是 .
    13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD= m.(结果保留根号)
    14.(3分)已知y≠0,且x2﹣3xy﹣4y2=0.则的值是 .
    15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则= .
    16.(3分)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:
    (1)当﹣1<[x]≤2时,x的取值范围是 ;
    (2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是 .
    三、本大题共3个小题,每小题9分,共27分.
    17.(9分)计算:|﹣2|﹣2cs60°+(π﹣2020)0.
    18.(9分)解二元一次方程组:
    19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.
    四、本大题共3个小题,每小题10分,共30分.
    20.(10分)已知y=,且x≠y,求()÷的值.
    21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).
    (1)求直线AB的解析式;
    (2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.
    22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
    根据上面图表信息,回答下列问题:
    (1)截止5月31日该国新冠肺炎感染总人数累计为 万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为 °;
    (2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
    (3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
    (4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.
    五、本大题共2个小题,每小题10分,共20分.
    23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
    (1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?
    (2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
    24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.
    (1)求证:点D平分;
    (2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.
    六、本大题共2个小题,第25题12分,第26题13分,共25分.
    25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.
    (1)如图1,当点P与点O重合时,线段OE和OF的关系是 ;
    (2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
    (3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.
    26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.
    (1)求抛物线的解析式;
    (2)设P是抛物线的对称轴上的一个动点.
    ①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
    ②连结PB,求PC+PB的最小值.
    2020年四川省乐山市中考数学试卷
    参考答案与试题解析
    一、选择题:本大题共10个小题,每小题3分,共30分.
    1.(3分)的倒数是( )
    A.﹣B.C.﹣2D.2
    【解答】解:根据倒数的定义,可知的倒数是2.
    故选:D.
    2.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )
    A.1100B.1000C.900D.110
    【解答】解:2000×=1100(人),
    故选:A.
    3.(3分)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=( )
    A.10°B.20°C.30°D.40°
    【解答】解:∵∠FEA=40°,GE⊥EF,
    ∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,
    ∵射线EB平分∠CEF,
    ∴,
    ∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,
    故选:B.
    4.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是( )
    A.4B.﹣4或10C.﹣10D.4或﹣10
    【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,
    点A表示的数是﹣3,右移7个单位,得﹣3+7=4.
    所以点B表示的数是4或﹣10.
    故选:D.
    5.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为( )
    A.9+2B.9+C.7+2D.8
    【解答】解:∵四边形ABCD为菱形,
    ∴AD=AB=4,AB∥CD,
    ∵∠BAD=120°,
    ∴∠ADB=∠CDB=30°,
    ∵O是对角线BD的中点,
    ∴AO⊥BD,
    在Rt△AOD中,AO=AD=2,
    OD=OA=2,
    ∵OE⊥CD,
    ∴∠DEO=90°,
    在Rt△DOE中,OE=OD=,
    DE=OE=3,
    ∴四边形AOED的周长=4+2++3=9+.
    故选:B.
    6.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是( )
    A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4
    【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),
    ∴,解得
    ∴直线为y=﹣+1,
    当y=2时,2=﹣+1,解得x=﹣2,
    由图象可知:不等式kx+b≤2的解集是x≥﹣2,
    故选:C.
    7.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是( )
    A.B.
    C.D.
    【解答】解:由题意,选项A阴影部分分面积为6,B,C,D的阴影部分的面积为5,
    如果能拼成正方形,选项A的正方形的边长为,选项B,C,D的正方形的边长为,
    观察图象可知,选项B,C,D阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,
    故选:D.
    8.(3分)已知3m=4,32m﹣4n=2.若9n=x,则x的值为( )
    A.8B.4C.2D.
    【解答】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.
    ∴42÷(3n)4=2,
    ∴(3n)4=42÷2=8,
    又∵9n=32n=x,
    ∴(3n)4=(32n)2=x2,
    ∴x2=8,
    ∴x==.
    故选:C.
    9.(3分)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为( )
    A.B.C.D.π
    【解答】解:∵∠ABC=90°,∠BAC=30°,BC=1,
    ∴AB=BC=,AC=2BC=2,
    ∴﹣﹣(﹣)=,
    故选:B.
    10.(3分)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为( )
    A.﹣B.﹣C.﹣2D.﹣
    【解答】解:点O是AB的中点,则OQ是△ABP的中位线,
    当B、C、P三点共线时,PB最大,则OQ=BP最大,
    而OQ的最大值为2,故BP的最大值为4,
    则BC=BP﹣PC=4﹣1=3,
    设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,
    解得:m2=,
    ∴k=m(﹣m)=﹣,
    故选:A.
    二、填空题:本大题共6个小题,每小题3分,共18分.
    11.(3分)用“>”或“<”符号填空:﹣7 > ﹣9.
    【解答】解:∵|﹣7|=7,|﹣9|=9,7<9,
    ∴﹣7>﹣9,
    故答案为:>.
    12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是 39 .
    【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,
    其中第四个数据为39,
    所以这组数据的中位数为39.
    故答案为39.
    13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD= m.(结果保留根号)
    【解答】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,
    ∴∠ABC=∠BCD﹣∠BAC=30°,
    ∴∠BAC=∠ABC,
    ∴BC=AC=4,
    在Rt△BDC中,sin∠BCD=,
    ∴sin60°==,
    ∴BD=2(m),
    答:自动扶梯的垂直高度BD=2m,
    故答案为:2.
    14.(3分)已知y≠0,且x2﹣3xy﹣4y2=0.则的值是 4或﹣1 .
    【解答】解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,
    可得x=4y或x=﹣y,
    ∴或,
    即则的值是4或﹣1;
    故答案为:4或﹣1.
    15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则= .
    【解答】解:连接CE,∵∠CAD=30°,∠ACD=90°,E是AD的中点,
    ∴AC=AD,CE=AD=AE,
    ∴∠ACE=∠CAE=30°
    ∵∠BAC=30°,∠ABC=90°,
    ∴AB=AC=AD,∠BAC=∠ACE,
    ∴AB∥CE,
    ∴△ABF∽△CEF,
    ∴,
    ∴,
    故答案为.
    16.(3分)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:
    (1)当﹣1<[x]≤2时,x的取值范围是 0≤x≤2 ;
    (2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是 .
    【解答】解:(1)由题意∵﹣1<[x]≤2,
    ∴0≤x≤2,
    故答案为0≤x≤2.
    (2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,
    则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,
    或x=2时,4﹣2a+3≤1+3,解得a≥,
    故答案为a<﹣1或a≥.
    三、本大题共3个小题,每小题9分,共27分.
    17.(9分)计算:|﹣2|﹣2cs60°+(π﹣2020)0.
    【解答】解:原式=
    =2.
    18.(9分)解二元一次方程组:
    【解答】解:,
    法1:②﹣①×3,得 2x=3,
    解得:x=,
    把x=代入①,得 y=﹣1,
    ∴原方程组的解为;
    法2:由②得:2x+3(2x+y)=9,
    把①代入上式,
    解得:x=,
    把x=代入①,得 y=﹣1,
    ∴原方程组的解为.
    19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.
    【解答】解:∵四边形ABCD是矩形,
    ∴DC=AB=3,∠ADC=∠C=90°.
    ∵CE=1,
    ∴DE==.
    ∵AF⊥DE,
    ∴∠AFD=90°=∠C,∠∠ADF+∠DAF=90°.
    又∵∠ADF+∠EDC=90°,
    ∴∠EDC=∠DAF,
    ∴△EDC∽△DAF,
    ∴=,即=,
    ∴FD=,即DF的长度为.
    四、本大题共3个小题,每小题10分,共30分.
    20.(10分)已知y=,且x≠y,求()÷的值.
    【解答】解:原式=

    =,
    ∵,
    ∴原式=
    解法2:同解法1,得原式=,
    ∵,
    ∴xy=2,
    ∴原式==1.
    21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).
    (1)求直线AB的解析式;
    (2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.
    【解答】解:(1)将点A(﹣2,﹣2)代入,得k=4,
    即,
    将B(1,a)代入,得a=4,
    即B(1,4),
    设直线AB的解析式为y=mx+n,
    将A(﹣2,﹣2)、B(1,4)代入y=kx+b,得,解得,
    ∴直线AB的解析式为y=2x+2;
    (2)∵A(﹣2,﹣2)、B(1,4),
    ∴,
    ∵,
    ∴.
    22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
    根据上面图表信息,回答下列问题:
    (1)截止5月31日该国新冠肺炎感染总人数累计为 20 万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为 72 °;
    (2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
    (3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
    (4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.
    【解答】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),
    扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,
    故答案为:20、72;
    (2)20﹣39岁人数为20×10%=2(万人),
    补全的折线统计图如图2所示;
    (3)该患者年龄为60岁及以上的概率为:=0.675;
    (4)该国新冠肺炎感染病例的平均死亡率为:.
    五、本大题共2个小题,每小题10分,共20分.
    23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
    (1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?
    (2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
    【解答】解:(1)设租用一辆轿车的租金为x元,
    由题意得:300×2+3x=1320,
    解得 x=240,
    答:租用一辆轿车的租金为240元;
    (2)①若只租用商务车,
    ∵,
    ∴只租用商务车应租6辆,所付租金为300×6=1800(元);
    ②若只租用轿车,
    ∵,
    ∴只租用轿车应租9辆,所付租金为240×9=2160(元);
    ③若混和租用两种车,设租用商务车m辆,租用轿车n辆,租金为W元.
    由题意,得 ,
    由6m+4n=34,得 4n=﹣6m+34,
    ∴W=300m+60(﹣6m+34)=﹣60m+2040,
    ∵﹣6m+34=4n≥0,
    ∴,
    ∴1≤m≤5,且m为整数,
    ∵W随m的增大而减小,
    ∴当m=5时,W有最小值1740,此时n=1.
    综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.
    24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.
    (1)求证:点D平分;
    (2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.
    【解答】证明:(1)如图1,连接AD、BC,
    ∵AB是半圆O的直径,
    ∴∠ADB=90°,
    ∵DE⊥AB,
    ∴∠ADE=∠ABD,
    又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,
    ∴DF=AF,
    ∴∠DAF=∠ADF=∠ABD,
    又∵∠DAC=∠DBC,
    ∴∠ABD=∠DBC,
    ∴=,
    ∴即点D平分;
    (2)如图2所示,连接OD、AD,
    ∵点E是线段OA的中点,
    ∴,
    ∴∠AOD=60°,
    ∴△OAD是等边三角形,
    ∴AD=AO=AH,
    ∴△ODH是直角三角形,且∠HDO=90°,
    ∴DH是⊙O的切线.
    六、本大题共2个小题,第25题12分,第26题13分,共25分.
    25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.
    (1)如图1,当点P与点O重合时,线段OE和OF的关系是 OE=OF ;
    (2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
    (3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.
    【解答】解:(1)∵四边形ABCD是平行四边形,
    ∴AO=CO,
    又∵∠AEO=∠CFO,∠AOE=∠COF=90°,
    ∴△AEO≌△CFO(AAS),
    ∴OE=OF,
    故答案为:OE=OF;
    (2)补全图形如图所示,
    结论仍然成立,
    理由如下:
    延长EO交CF于点G,
    ∵AE⊥BP,CF⊥BP,
    ∴AE∥CF,
    ∴∠EAO=∠GCO,
    ∵点O为AC的中点,
    ∴AO=CO,
    又∵∠AOE=∠COG,
    ∴△AOE≌△COG(AAS),
    ∴OE=OG,
    ∵∠GFE=90°,
    ∴OE=OF;
    (4)点P在线段OA的延长线上运动时,线段CF、AE、OE之间的关系为OE=CF+AE,
    证明如下:如图,延长EO交FC的延长线于点H,
    由(2)可知△AOE≌△COH,
    ∴AE=CH,OE=OH,
    又∵∠OEF=30°,∠HFE=90°,
    ∴HF=EH=OE,
    ∴OE=CF+CH=CF+AE.
    26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.
    (1)求抛物线的解析式;
    (2)设P是抛物线的对称轴上的一个动点.
    ①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
    ②连结PB,求PC+PB的最小值.
    【解答】解:(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),
    ∵抛物线的对称轴为直线x=2,
    ∴D(2,0),
    又∵=,
    ∴CD=BD•tan∠CBD=4,
    即C(2,4),
    代入抛物线的解析式,得4=a(2+1)(2﹣5),
    解得 ,
    ∴二次函数的解析式为 =﹣x2++;
    (2)①设P(2,t),其中0<t<4,
    设直线BC的解析式为 y=kx+b,
    ∴,
    解得
    即直线BC的解析式为 ,
    令y=t,得:,
    ∴点E(5﹣t,t),
    把 代入,得 ,
    即,
    ∴,
    ∴△BCF的面积=×EF×BD=(t﹣)=,
    ∴当t=2时,△BCF的面积最大,且最大值为;
    ②如图,连接AC,根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,
    ∴,
    过点P作PG⊥AC于G,则在Rt△PCG中,,
    ∴,
    过点B作BH⊥AC于点H,则PG+PH≥BH,
    ∴线段BH的长就是的最小值,
    ∵,
    又∵,
    ∴,
    即,
    ∴的最小值为.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2020/7/22 9:27:53;用户:柯瑞;邮箱:ainixiake00@163.cm;学号:500557车型
    每车限载人数(人)
    租金(元/辆)
    商务车
    6
    300
    轿车
    4
    车型
    每车限载人数(人)
    租金(元/辆)
    商务车
    6
    300
    轿车
    4
    相关试卷

    [数学]2022年四川省乐山市中考真题数学真题(原题版+解析版): 这是一份[数学]2022年四川省乐山市中考真题数学真题(原题版+解析版),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    [数学]2023年四川省乐山市中考真题数学真题(原题版+解析版): 这是一份[数学]2023年四川省乐山市中考真题数学真题(原题版+解析版),文件包含数学2023年四川省乐山市中考真题数学真题解析版docx、数学2023年四川省乐山市中考真题数学真题原题版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    2021年四川省乐山市中考数学真题: 这是一份2021年四川省乐山市中考数学真题,共12页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map