专题01 侧M型-2021年中考数学二轮复习经典问题专题训练
展开专题01 侧M型
【规律总结】
模型一“猪蹄”模型(M模型) | |
点P在EF左侧,在AB、 CD部 | “猪蹄”模型 |
结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
【典例分析】
例1.(2020·辽宁大连市·七年级期末)如图,∠BCD=70°,AB∥DE,则∠α与∠β满足( )
A.∠α+∠β=110° B.∠α+∠β=70° C.∠β﹣∠α=70° D.∠α+∠β=90°
【答案】B
【分析】
过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.
【详解】
如图,过点C作CF∥AB,
∵AB∥DE,
∴AB∥CF∥DE,
∴∠BCF=∠α,∠DCF=∠β,
∵∠BCD=70°,
∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,
∴∠α+∠β=70°.
故选B.
【点睛】
本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.
例2.(2020·湖北武汉市·七年级期末)如图,,平分,,,则__________.
【答案】
【分析】
过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.
【详解】
解:过E点作EM∥AB,
∴∠B=∠BEM,
∵AB∥CD,
∴EM∥CD,
∴∠MED=∠D,
∴∠BED=∠B+∠D,
∵EF平分∠BED,
∴∠DEF=∠BED,
∵∠DEF+∠D=66°,
∴∠BED+∠D=66°,
∴∠BED+2∠D=132°,
即∠B+3∠D=132°,
∵∠B-∠D=28°,
∴∠B=54°,∠D=26°,
∴∠BED=80°.
故答案为:80°.
【点睛】
本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.
例3.(2020·洛阳市第五中学九年级期中)已知:如图1,,.
(1)判断图中平行的直线,并给予证明;
(2)如图2,,,请判断与的数量关系,并证明.
【答案】(1)AB∥CD,EF∥HL,证明见解析;(2)∠P=3∠Q,证明解析.
【分析】
(1)求出∠AMN+∠2=180°,根据平行线的判定推出AB∥CD即可;延长EF交CD于F1,根据平行线性质和已知求出∠AEF=∠EF1L,根据平行线的判定推出即可;
(2)作QR∥AB,PL∥AB,根据平行线的性质得出∠RQM=∠QMB,RQ∥CD,推出∠MQN=∠QMB+∠QND,同理∠MRN=∠PMB+∠PND,代入求出即可.
【详解】
解:(1)AB∥CD,EF∥HL,
证明如下:∵∠1=∠AMN,
∴∠1+∠2=180°,
∴∠AMN+∠2=180°,
∴AB∥CD;
延长EF交CD于F1,
∵AB∥CD,
∴∠AEF=∠EF1L,
∵∠AEF=∠HLN,
∴∠EF1L=∠HLN,
∴EF∥HL;
(2)∠P=3∠Q,
证明如下:∵由(1)得AB∥CD,作QR∥AB,PL∥AB,
∴∠RQM=∠QMB,RQ∥CD,
∴∠RQN=∠QND,
∴∠MQN=∠QMB+∠QND,
∵AB∥CD,PL∥AB,
∴AB∥CD∥PL,
∴∠MPL=∠PMB,∠NPL=∠PND,
∴∠MPN=∠PMB+∠PND,
∵∠PMQ=2∠QMB,∠PNQ=2∠QND,
∴∠PMB=3∠QMB,∠PND=3∠QND,
∴∠MPN=3∠MQN,
即∠P=3∠Q;
【点睛】
本题考查平行线的性质和判定,平行线公理的推论.能正确作出辅助线是解决本题的关键.
【好题演练】
1.(2020·广西柳州市·七年级期末)如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )
A.∠α+∠β+∠γ=180° B.∠α-∠β+∠γ=180°
C.∠α+∠β-∠γ=180° D.∠α-∠β-∠γ=180°[
【答案】C
【分析】
过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.
【详解】
解:过点E作EF∥AB,
∴∠α+∠AEF=180°(两直线平行,同旁内角互补),
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠EDC(两直线平行,内错角相等),
∵∠β=∠AEF+∠FED,
又∵∠γ=∠EDC,
∴∠α+∠β-∠γ=180°,
故选:C.
【点睛】
本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.
2.(2020·河南郑州市·七年级期末)如图,直线a//b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=43°,则∠2的度数为( )
A.101° B.103° C.105° D.107°
【答案】B
【分析】
如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=43°,借助三角形外角的性质求出∠AMO即可解决问题.
【详解】
解:如图,∵直线a∥b,
∴∠AMO=∠2;
∵∠ANM=∠1,∠1=43°,
∴∠ANM=43°,
∴∠AMO=∠A+∠ANM=60°+43°=103°,
∴∠2=∠AMO=103°.
故选:B.
【点睛】
该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.
二、填空题
3.(2020·浙江绍兴市·七年级期末)如图,已知AB//CD,,,,则____度.
【答案】90
【详解】
解:如图,过点E作EH∥AB,过点F作FG∥AB,
∵AB∥CD,
∴AB∥FG∥CD,AB∥EH∥CD,
∴,,
,,
又∵,,
∴,,
∴,,
∴,
即:,
∴.
故答案为:90.
【点睛】
本题考查了平行线的性质,平行公理,作辅助线构造内错角是解题的关键.
4.(2015·山西九年级专题练习)如图,l∥m,等边△ABC的顶点A在直线m上,则∠=_________.
【答案】20°
【解析】试题分析:延长CB交直线m于D,根据根据两直线平行,内错角相等解答即可,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠α.
试题解析:如图,延长CB交直线m于D,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵l∥m,
∴∠1=40°.
∴∠α=∠ABC-∠1=60°-40°=20°.
考点:1.平行线的性质;2.等边三角形的性质.
三、解答题
5.(2020·辽宁辽阳市·七年级期末)请你探究:如图(1),木杆与平行,木杆的两端、用一橡皮筋连接.
(1)在图(1)中,与有何关系?
(2)若将橡皮筋拉成图(2)的形状,则、、之间有何关系?
(3)若将橡皮筋拉成图(3)的形状,则、、之间有何关系?
(4)若将橡皮筋拉成图(4)的形状,则、、之间有何关系?
(5)若将橡皮筋拉成图(5)的形状,则、、之间有何关系?
(注:以上各问,只写出探究结果,不用说明理由)
【答案】(1)∠B+∠C=180º;(2)∠B+∠C=∠A;(3)∠A +∠B+∠C=360º;(4)∠A+∠B=∠C;(5)∠A+∠C =∠B
【分析】
(1)利用平行线的性质“两直线平行,同旁内角相等”即可解答;
(2)过点A作AD∥BE,利用“两直线平行,内错角相等”即可得出结论;
(3)同样过点A作AD∥BE,利用“两直线平行,同旁内角互补”即可得出结论;
(4)利用“两直线平行,同位角相等”和三角形外角性质可得出结论;
(5)利用“两直线平行,同位角相等”和三角形外角性质可得出结论.
【详解】
(1)如图(1)∵与平行,∴∠B+∠C=180º;
(2)如图(2),过点A作AD∥BE,则AD∥BE∥CF(平行于同一条直线的两条直线平行),
∴∠B=∠BAD,∠C=∠DAC,
∴∠B+∠C=∠BAD+∠DAC=∠BAC,
即∠B+∠C=∠A;
(3)如图(3),过点A作AD∥BE,则AD∥BE∥CF,
∴∠B+∠BAD=180º,∠DAC+∠C=180º,
∴∠B+∠BAD+∠DAC+∠C=360º,
即∠B+∠A+∠C=360º;
(4)如图(4),设BE与AC相交于D,
∵与平行,
∴∠C=∠ADE,
∵∠ADE=∠A+∠B,
∴∠A+∠B=∠C;
(5)如图(5),设CF与AB相交于D,
∵与平行,
∴∠B=∠ADF,
∵∠ADF=∠A+∠C,
∴∠A+∠C=∠B.
【点睛】
本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质,作辅助平行线是解答的关键.
6.(2020·云南昆明市·七年级期末)如图①,在平面直角坐标系中,点的坐标分别为,现同时将点分别向上平移个单位长度,再向右平移个单位长度,分别得到点的对应点,连接
问题提出:
(1)请直接写出点的坐标 , ,及四边形的面积 ﹔
拓展延伸:
(2)如图①,在坐标轴上是否存在一点,使,若存在,请求出点的坐标,若不存在,试说明理由.
迁移应用:
(3)如图②,点是线段上的个动点,连接,当点在上移动时(不与重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
【答案】(1);(2)存在,M(0,6)或(0,-2)或(-3,0)或(1,0);(3)结论①正确,
【分析】
(1)根据点的平移规律易得点C,D的坐标,可证四边形ABDC是平行四边形,由平行四边形的面积公式可求解;
(2)先计算出S△MAC=2,然后分M在x轴或y轴上两种情况,根据三角形面积公式列方程求解,从而确定M的坐标;
(3)作PE∥AB,根据平行线的性质得CD∥PE∥AB,则∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO.
【详解】
解:(1)由题意可知:C点坐标为,D点坐标为(4,2)
∴AB=4,OC=2
S四边形ABDC=AB×OC=4×2=8
故答案为:(0,2);(4,2);8
(2)存在
,且
①当点在轴上时,令
或
此时点的坐标为
②当点在轴上时,令
或b=1
此时点的坐标为
综上,点M的坐标为
(3)结论①正确
过点作交与点
∵AB∥CD
【点睛】
本题是四边形综合题,考查了平移的性质,平行四边形的判定和性质,三角形的面积公式,也考查了坐标与图形性质,灵活运用这些性质进行推理是本题的关键.
初中数学中考复习 专题01:平行线之侧M型-备战2021中考数学解题方法系统训练(全国通用): 这是一份初中数学中考复习 专题01:平行线之侧M型-备战2021中考数学解题方法系统训练(全国通用),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题02 笔尖型(解析版)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题02 笔尖型(解析版)-2021年中考数学二轮复习经典问题专题训练,共21页。
专题37 (双)X型相似问题-2021年中考数学二轮复习经典问题专题训练: 这是一份专题37 (双)X型相似问题-2021年中考数学二轮复习经典问题专题训练,文件包含专题37双X型相似问题原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题37双X型相似问题解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。