|试卷下载
搜索
    上传资料 赚现金
    专题59 实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题59 实验操作类问题(1)(原卷版)-2021年中考数学二轮复习经典问题专题训练.docx
    • 解析
      专题59 实验操作类问题(1)(解析版)-2021年中考数学二轮复习经典问题专题训练.docx
    专题59  实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练01
    专题59  实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练02
    专题59  实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练03
    专题59  实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练01
    专题59  实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练02
    专题59  实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练03
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题59 实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练

    展开
    这是一份专题59 实验操作类问题(1)-2021年中考数学二轮复习经典问题专题训练,文件包含专题59实验操作类问题1原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题59实验操作类问题1解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    专题59  实验操作类问题(1

    规律总结

    实验操作问题是让学生在实际操作的基 础上设计问题,通过动手测量、作图、取值、 计算等实验,猜想获得数学结论来设计有关 问题,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合理猜想和验证。

    【典例分析】

    1.(2020·全国九年级专题练习)如图,已知像这样由7个全等的正六边形组成的图形叫做二环蜂窝,每个正六边形的顶点叫做格点,顶点都在格点上的三角形叫做格点三角形.已知为该二环蜂窝一个格点三角形,则在该二环蜂窝中,以点A为顶点且与相似(包括全等但不与重合)的格点三角形最多能作的个数为(   

    A18 B23 C25 D31

    【答案】D

    【分析】

    先说明△ABC是含30°的直角三角形,分两类讨论符合题意的三角形,相似比为1的,根据一个正六边形,以斜边不同找三角形的个数为6,三个正六边形为:个;找相似比不为1的,以斜边不同,同理可得结论.

    【详解】

    解:∵7个全等的正六边形,

    ∴△ABC三个内角分别为30°60°90°

    如图1,与△ABC全等时,在正六边形ADEFGH中,

    AF为斜边的有4个:△AFG△AFH△AFE△AFD

    DG为斜边的有△ADG,以EH为斜边的有△AEH

    同理另外以点A为顶点的两个正六边形各有6个全等的三角形,去掉△ABC本身,所以一共有17个三角形,

    如图2,与△ABC相似的,以AA'为斜边的有4个,以AD为斜边的有4个,

    C'B'为斜边的有△AB'C',以BB'为斜边的有△ABB',以D'H为斜边的有△AHD',以EH为斜边的有△AEH,以FG为斜边的有△AFG,以OG为斜边的有△OAG,所以一共有14个,

    综上所述,以点A为顶点且与△ABC相似(包括全等但不与△ABC重合)的格点三角形最多能作的个数为:17+1431(个);

    故选:D

    【点睛】

    本题考查相似和全等三角形的判定、正六边形的性质,解题的关键是学会分类讨论的思想,属于中考填空题中的压轴题.

    2.(2020·西安市铁一中学九年级期中)如图,将一张矩形纸片的边斜着向边对折,使点落在边上,记为,折痕为;再将边斜向下对折,使点落在上,记为,折痕为,则矩形纸片的面积为________

    【答案】15

    【分析】

    先根据矩形的性质可得,设,从而可得,再根据折叠的性质可得,从而可得,然后根据相似三角形的判定与性质可得,由此可得,最后根据可求出a的值,从而可得ABBC的值,据此利用矩形的面积公式即可得.

    【详解】

    四边形ABCD是矩形,

    ,则

    由折叠的性质得:

    中,

    ,即

    解得

    解得

    则矩形纸片的面积为

    故答案为:15

    【点睛】

    本题考查了矩形与折叠问题、相似三角形的判定与性质等知识点,熟练掌握矩形与折叠的性质是解题关键.

    3.(2020·浙江七年级其他模拟)操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:

    1)已知x=2,请画出数轴表示出x的点:

    2)在数轴上,我们把表示数2的点定为基准点,记作点O,对于两个不同的点AB,若点A B到点O的距离相等,则称点A与点B互为基准等距变换点.例如图2,点A表示数-1,点B表示数5,它们与基准点O的距离都是3个单位长度,我们称点A与点B互为基准等距变换点.

    记已知点M表示数m,点N表示数n,点M与点N互为基准等距变换点.I.若m=3,则n=    II.用含m的代数式表示n=   

    对点M进行如下操作:先把点M表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N,若点M与点N互为基准等距变换点,求点M表示的数;

    P在点Q的左边,点P与点Q之间的距离为8个单位长度,对Q点做如下操作: Q1Q的基准等距变换点,将数轴沿原点对折后Q1的落点为Q2这样为一次变换: Q3Q2的基准等距变换点,将数轴沿原点对折后Q3的落点为Q4这样为二次变换: Q5Q4的基准等距变换点......,依此顺序不断地重复变换,得到Q5Q6Q7....Qn,若PQn.两点间的距离是4,直接写出n的值.

    【答案】1)见解析;(2①I1II 4-m ②③26

    【分析】

    1)在数轴上描点;

    2)由基准点的定义可知,

    3)(3)设P点表示的数是m,则Q点表示的数是m+8,由题可知Q1Q是基准点,Q2Q1关于原点对称,Q3Q2是基准点,Q4Q3于原点对称,
    由此规律可得到当n为偶数,Qn表示的数是m+8-2nPQn两点间的距离是4,则有|m-m-8+2n|=4即可求n

    【详解】

    解:(1)如图所示,

    2①Ⅰ∵2是基准点,m=332的距离是1,所以到2的距离是1的另外一个点是1
    ∴n=1
    故答案为1

    .有定义可知:m+n=4

    ∴n=4-m

    故答案为:4-m

    设点M表示的数是m
    先乘以23,得到23m
    再沿着数轴向右移动2个单位长度得到点N23m+2
    M与点N互为基准等距变换点,
    ∴23m+2+m=4
    ∴m=
    P点表示的数是m,则Q点表示的数是m+8,如图,


    由题可知Q1表示的数是4-(m+8)Q2表示的数是-4+(m+8)Q3表示的数是8-(m+8)Q4表示的数是-8+(m+8)Q5表示的数是12-(m+8)Q6表示的数是-12+(m+8)…
    n为偶数,Qn表示的数是-2n+m+8),
    PQn两点间的距离是4
    ∴|m-[-2n+(m+8)]|=4
    ∴n=2n=6

    【点睛】

    本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q的变换规律是解题的关键.

     

     

    【好题演练】

    一、单选题

    1.(2019·山西七年级期末)在数学课上,老师让每个同学拿一张三角形纸片,设,要求同学们利用所学的三角形全等的判定方法,剪下两个全等的三角形.下面是四位同学的裁剪方法,如图,剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有(   

    A1 B2 C3 D4

    【答案】C

    【分析】

    利用全等三角形的判定定理一一排查即可.

    【详解】

    如图1中,

    ∵AB=AC

    ∴∠B=∠C

    BE=FC=2

    ∠B=∠C

    BF=CG=3

    △EBF≌△FCGSAS),

    剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有,

    如图2

    ∵AB=AC

    ∴∠B=∠C

    BE=CG=3

    ∠B=∠C

    BF=CF=2.5

    △BEF≌△CGFSAS),

    剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片,

    如图 3

    ∵AB=AC

    ∴∠B=∠C

    ∵∠EFG=

    ∴∠BEF+∠EFB=180º-xº=∠EFB+∠GFC

    ∴∠BEF=∠GFC

    BE的对应边是FC,相等情况不确定,

    △BEF△CGF全等不确定,

    如图4

    ∵AB=AC

    ∴∠B=∠C

    ∵∠EFG=

    ∴∠BEF+∠EFB=180º-xº=∠EFB+∠GFC

    ∴∠BEF=∠GFC

    EB=FC=2

    ∠B=∠C

    △BEF≌△CFGASA),

    剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片.

    故选择:C

    【点睛】

    本题考查全等三角形的判定,关键是熟练掌握全等三角形的判定方法,从图形中找到三角形全等的条件是否充足,够条件可以断定,条件不够或不确定就不断定.

    2.(2020·台州市椒江区前所中学九年级月考)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图,以直角三角形的各边为边向外作等边三角形,再把较小的两个等边三角形按如图的方式放置在最大等边三角形内.若知道图中阴影部分的面积,则一定能求出图中(   

    A.最大等边三角形与直角三角形面积的和 B.最大等边三角形的面积

    C.较小两个等边三角形重叠部分的面积 D.直角三角形的面积

    【答案】C

    【分析】

    设三个等边三角形的面积分别为S1S2S3,则有S1+S2=S3,利用三角形面积的和与差可得结论.

    【详解】

    解:如图,以直角三角形的三边为边向外作等边三角形,设它们的面积分别为S1S2S3,则有S1+S2=S3
    ∴S1+S2+S阴影=S3+S△EFG
    ∴S阴影=S△EFG
    即知道图中阴影部分的面积,则一定能求出图中较小两个等边三角形重叠部分的面积,
    故选:C

    【点睛】

    本题考查了勾股定理的证明和三角形的面积,直观识图是关键.

     

     

    二、填空题

    3.(2020·四川自贡市·)如图,在三角形纸片中,,将纸片沿过点的直线折叠,使点落在斜边上的点处,折痕记为,剪去后得到双层,再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的面积是_____

    【答案】

    【分析】

    利用三角函数先求解得到的中垂线,由对折的性质求解分情况讨论, 如图中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,如图中,当FD=FB时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,利用平行四边形的面积是三角形面积的倍,从而可得答案.

    【详解】

    解:如图,

    由对折设

    的中垂线,

    Rt中,

    如图中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,

    为等边三角形,

     

    如图中,当FD=FB时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,

    综上:所得平行四边形的面积是

    故答案为:

    【点睛】

    本题考查翻折变换、线段的垂直平分线的判定与性质,勾股定理的应用,平行四边形的判定和性质、含角的直角三角形的性质,等边三角形的判定与性质等知识,解题的关键是学会用分类讨论的思想思考问题.

    4.(2020·湖北襄阳市·九年级其他模拟)菱形ABCD中,AB=8,∠B=120°,沿过菱形不同的顶点裁剪两次,再将所裁下的图形拼接,若恰好能无缝,无重叠的拼接成一个矩形,则所得矩形的对角线长为_____

    【答案】或者

    【分析】

    按两种情况讨论,根据题意可知两种情况可拼出的新矩形一样,再根据菱形的性质以及矩形的性质,由勾股定理求解即可得到新矩形的对角线的长度;

    【详解】

    解:分情况讨论,

    情况,如图,分别沿菱形的对角线ACBD裁剪,将剪下的四个三角形重新拼接得到矩形 或者矩形 ,如图,

    ∵AB=8,∠B=120°

    ,

    当拼成矩形时, , ,

    矩形对角线长为:

    当拼成矩形时,有 , ,

    矩形对角线长为:

    情况,过BBE⊥AD,过DDF⊥BC,分别沿BEDF裁剪,将剪下的三角形和剩余的矩形重新拼接得到和一样的新矩形 或者矩形,如图,

    因此新矩形的对角线长为或者

    故答案为:或者

    【点睛】

    本题主要考查了菱形的性质以及矩形的判定与性质、勾股定理,学会分情况讨论以及勾股定理求解对角线是解题的关键;

     

    三、解答题

    5.(2020·江苏镇江市·八年级期末)阅读:顶点在矩形边上的菱形叫做矩形的内接菱形.八(1)班的宣传小组ABC三名同学在布置班级文化时,他们需要从一张矩形纸片中制作出一个最大的内接菱形.

    A说:我会折,横对折后再竖对折,剪一刀得到一个直角三角形,展开后就是菱形.

    B说:我会画,作一组对边上两点连线的垂直平分线,然后连线也可以得到菱形.

    C说:我会叠,取两个大小一样的矩形纸片,让两矩形的长两两相交,重叠的部分形成四边形,则这个四边形也是菱形.(两两相交:一个矩形的两条长边与另一个矩形的两条长边都相交)

    一)操作与画图.

    1.在图1中画出折、剪、展所得的最大内接菱形,它是菱形的依据是_______

    2.在图2中用尺规作出所得的最大内接菱形(保留作图痕迹,不要求写作法)

    3.在图3中画出重叠后的最大内接菱形,并画出另一矩形的摆放位置.

    (二)证明与计算

    1.标上必要的字母,证明图2中操作得到的四边形是菱形.

    2.己知矩形,结合图1,图2,图3,计算此矩形内接菱彤的面积最大值是________

    (三)拓展与应用

    如图,矩形的最大内接菱形的面积是矩形面积的,则________

    【答案】(一)操作与画图:1.折图见解析,四边相等的四边形为菱形或对角线垂直且互相平分的四边形为菱形;2.详见解析;3.详见解析;(二)证明与计算:1.详见解析;2;(三)拓展与应用:

    【分析】

    (一)操作与画图:1.利用矩形的轴对称性质可以折出矩形的最大的内接菱形,由对折可得:,从而可得结论;或由对折可得:从而可得答案;2.连接 再作的垂直平分线分别与,从而可得答案;3.如图,画矩形与矩形,满足一条对角线按图所示重合即可得到答案.

    (二)证明与计算:1.先证明,得到 结合,从而可得结论;2.由图1的菱形面积等于矩形面积的一半,从而可得答案;图2,3中,设AF=FC=x 利用勾股定理求解,从而可得菱形的面积;

    (三)拓展与应用:如图4中,不妨设ABAD,以AC为菱形的对角线,此时菱形的面积最大,由已知可得CF=5kBC=9k,则BF=4k,再利用勾股定理表示,从而分两种情况求解即可.

    【详解】

    解:(一)操作与画图.

    1.如图,由对折可得:

    四边形是菱形.

    或:由对折可得:

    四边形是菱形.

    所以依据是:四边相等的四边形为菱形或对角线垂直且互相平分的四边形为菱形.

    故答案为:四边相等的四边形为菱形或对角线垂直且互相平分的四边形为菱形.

    2.连接 再作的垂直平分线分别与

    则四边形是所求作的菱形.作图如下:

    3.如图所示,让矩形的两条对角线互相重合,重叠部分是所求作的菱形,

     

    (二)证明与计算:1.证明:由题意知:矩形

    的垂直平分线,

    四边形为平行四边形

    平行四边形为菱形

    2.解:如图1中,菱形AECF的面积=

    如图23中,设AF=FC=x

    Rt中,∵∠B=90°

     解得

    菱形AECF的面积=

    24

    此矩形内接菱形的面积最大值是

    故答案为

    (三)拓展与应用:

    解:如图4中,不妨设ABAD,以AC为菱形的对角线,此时菱形的面积最大,

     由题意:

    CF=5kBC=9k,则BF=4k

     Rt中,

    ∵∠B=90°AF=CF=5kBF=4k

    ABAD时,同法可得

    故答案为31

    【点睛】

    本题属于四边形综合题,考查了矩形的性质,菱形的判定和性质,轴对称的性质,垂直平分线的性质,三角形的全等的判定与性质,勾股定理的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.

    6.(2018·黑龙江齐齐哈尔市·九年级期末)综合与实践

    问题背景:

    综合与实践课上,同学们以两个全等的三角形纸片为操作对象,进行相一次相关问题的研究. 下面是创新小组在操作过程中研究的问题, 如图一,△ABC△DEF 其中ACB=90°BC=2A=30°

    操作与发现:

    1)如图二,创新小组将两张三角形纸片按如图示的方式放置,四边形ACBF的形状是       CF=         

    2)创新小组在图二的基础上,将△DEF纸片沿AB方向平移至图三的位置,其中点EAB的中点重合.连接CEBF.四边形BCEF的形状是       CF=       

    操作与探究

    3)创新小组在图三的基础上又进行了探究,将△DEF纸片绕点E逆时针旋转至DEBC平行的位置,如图四所示,连接AF BF 经过观察和推理后发现四边形ACBF也是矩形,请你证明这个结论.

    【答案】1)矩形,4 ;(2)菱形,;(3)详见解析.

    【分析】

    1)由题意及图形可直接解答;

    2)根据题意及图形,结合直角三角形的性质定理可直接得到答案;

    3)根据旋转的性质及题意易得,然后得到四边形ACBF为平行四边形,最后问题得证.

    【详解】

    1)如图所示:

    △ABC△DEF 其中ACB=90°BC=2A=30°

    四边形ACBF是矩形,AB=4

    AB=CF=4

    故答案为:矩形,4 

    2)如图所示:

    △ABC△DEF 其中ACB=90°BC=2A=30°

    四边形ECBF是平行四边形,

    EAB的中点重合,CE=BE是等边三角形,

    EC=BC四边形ECBF是菱形,CFEB互相垂直且平分,

    故答案为:菱形,

    3)证明:如图所示:

    为等边三角形

    四边形ACBF为平行四边形

    四边形ACBF为矩形.

    【点睛】

    本题主要考查特殊平行四边形的性质及判定、全等三角形的性质,关键是由题意图形的变化及三角形全等的性质得到线段的等量关系,然后结合特殊平行四边形的判定方法证明即可.

     

     

    相关试卷

    中考数学二轮复习专题一《实验操作类问题》练习(含答案): 这是一份中考数学二轮复习专题一《实验操作类问题》练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    专题69 综合运用类问题(1)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题69 综合运用类问题(1)-2021年中考数学二轮复习经典问题专题训练,文件包含专题69综合运用类问题1原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题69综合运用类问题1解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    专题60 实验操作类问题(2)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题60 实验操作类问题(2)-2021年中考数学二轮复习经典问题专题训练,文件包含专题60实验操作类问题2原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题60实验操作类问题2解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map