搜索
    上传资料 赚现金
    英语朗读宝

    高三数学一轮复习: 第6章 第1节 不等式的性质与一元二次不等式 试卷

    高三数学一轮复习: 第6章 第1节 不等式的性质与一元二次不等式第1页
    高三数学一轮复习: 第6章 第1节 不等式的性质与一元二次不等式第2页
    高三数学一轮复习: 第6章 第1节 不等式的性质与一元二次不等式第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高三数学一轮复习: 第6章 第1节 不等式的性质与一元二次不等式

    展开

    这是一份高三数学一轮复习: 第6章 第1节 不等式的性质与一元二次不等式,共11页。
    2.不等式具有很强的工具性,应用十分广泛,推理与证明贯穿于每一个章节,因此,不等式往往与集合、函数、导数的应用、数列交汇考查,对于证明,主要体现在不等式证明和不等式恒成立证明以及几何证明.
    3.从能力上,突出对函数与方程、转化与化归、分类讨论等数学思想的考查.
    [导学心语]
    1.加强不等式基础知识的复习.不等式的基础知识是进行推理和解不等式的理论依据,要弄清不等式性质的条件与结论;一元二次不等式、基本不等式是解决问题的基本工具;如利用导数研究函数单调性,常常归结为解一元二次不等式问题.
    2.强化推理证明和不等式的应用意识.从近年命题看,试题多与数列、函数、解析几何交汇渗透,对不等式知识、方法技能要求较高.抓好推理论证,强化不等式的应用训练是提高解综合问题的关键.
    3.重视数学思想方法的复习.明确不等式的求解和推理证明就是一个把条件向结论转化的过程;加强函数与方程思想在不等式中的应用训练,不等式、函数与方程三者密不可分,相互转化.
    第一节 不等式的性质与一元二次不等式
    [考纲传真] 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.会从实际问题的情境中抽象出一元二次不等式模型.3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
    1.实数的大小顺序与运算性质的关系
    (1)a>b⇔a-b>0;
    (2)a=b⇔a-b=0;
    (3)ac⇒a>c;(单向性)
    (3)可加性:a>b⇔a+c>b+c;(双向性)
    a>b,c>d⇒a+c>b+d;(单向性)
    (4)可乘性:a>b,c>0⇒ac>bc;
    a>b,c0,c>d>0⇒ac>bd;(单向性)
    (5)乘方法则:a>b>0⇒an>bn(n≥2,n∈N);(单向性)
    (6)开方法则:a>b>0⇒eq \r(n,a)>eq \r(n,b)(n≥2,n∈N);(单向性)
    (7)倒数性质:设ab>0,则aeq \f(1,b).(双向性)
    3.一元二次不等式与相应的二次函数及一元二次方程的关系
    4.用程序框图表示一元二次不等式ax2+bx+c>0(a>0)的求解过程
    1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
    (1)a>b⇔ac2>bc2.( )
    (2)a>b>0,c>d>0⇒eq \f(a,d)>eq \f(b,c).( )
    (3)若不等式ax2+bx+c0.( )
    (4)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )
    [答案] (1)× (2)√ (3)√ (4)×
    2.(教材改编)下列四个结论,正确的是( )
    ①a>b,cb-d;
    ②a>b>0,cb>0⇒eq \r(3,a)>eq \r(3,b);
    ④a>b>0⇒eq \f(1,a2)>eq \f(1,b2).
    A.①② B.②③
    C.①④ D.①③
    D [利用不等式的同向可加性可知①正确;对于②,根据不等式的性质可知acb>0可知a2>b2>0,所以eq \f(1,a2)b,则下列不等式恒成立的是( )
    A.a2>b2 B.eq \f(a,b)>1
    C.2a>2b D.lg(a-b)>0
    C [取a=-1,b=-2,排除A,B,D.故选C.]
    4.(2015·广东高考)不等式-x2-3x+4>0的解集为________________.(用区间表示)
    (-4,1) [由-x2-3x+4>0得x2+3x-40显然成立;
    ②当m≠0时,由条件知eq \b\lc\{\rc\ (\a\vs4\al\c1(m>0,,Δ=4m2-4m0
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))y0
    (2)已知函数f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.
    (1)C [函数y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x在(0,+∞)上为减函数,∴当x>y>0时,eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x0⇒eq \f(1,x)0时,不能比较sin x与sin y的大小,故B错误;x>y>0⇒xy>0⇒/ ln(xy)>0⇒/ ln x+ln y>0,故D错误.]
    (2)由题意知f(-1)=a-b,f(1)=a+b,
    f(-2)=4a-2b.3分
    设m(a+b)+n(a-b)=4a-2b,
    则eq \b\lc\{\rc\ (\a\vs4\al\c1(m+n=4,,m-n=-2,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(m=1,,n=3,))8分
    ∴f(-2)=(a+b)+3(a-b)=f(1)+3f(-1).10分
    ∵1≤f(-1)≤2,2≤f(1)≤4,
    ∴5≤f(-2)≤10,
    即f(-2)的取值范围为[5,10].12分
    [规律方法] 1.对于不等式的常用性质,要弄清其条件和结论,不等式性质包括“单向性”和“双向性”两个方面,单向性主要用于证明不等式,双向性是解不等式的依据,因为解不等式要求的是同解变形.
    2.判断多个不等式是否成立,需要逐一给出推理判断或反例说明.
    3.由a

    相关试卷

    (数学理科)高考数学复习24 不等式的性质及一元二次不等式 :

    这是一份(数学理科)高考数学复习24 不等式的性质及一元二次不等式 ,共3页。

    高考数学一轮复习检测:第6章第1节 不等式的性质及一元二次不等式 含解析:

    这是一份高考数学一轮复习检测:第6章第1节 不等式的性质及一元二次不等式 含解析,共9页。试卷主要包含了若<2,则的取值范围是,在R上定义运算⊙等内容,欢迎下载使用。

    高考数学一轮复习夯基练习:不等式的性质与一元二次不等式(含答案):

    这是一份高考数学一轮复习夯基练习:不等式的性质与一元二次不等式(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map