所属成套资源:高考数学一轮复习讲义
高考数学一轮复习讲义第2章第3节函数的奇偶性与周期性
展开
这是一份高考数学一轮复习讲义第2章第3节函数的奇偶性与周期性,共13页。学案主要包含了知识拓展,思考辨析等内容,欢迎下载使用。
1.函数的奇偶性
2.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
【知识拓展】
1.函数奇偶性常用结论
(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
2.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=eq \f(1,fx),则T=2a(a>0).
(3)若f(x+a)=-eq \f(1,fx),则T=2a(a>0).
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )
(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √ )
(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.( √ )
(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( √ )
(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( √ )
1.(教材改编)下列函数为偶函数的是( )
A.f(x)=x-1B.f(x)=x2+x
C.f(x)=2x-2-xD.f(x)=2x+2-x
答案 D
解析 D中,f(-x)=2-x+2x=f(x),
∴f(x)为偶函数.
2.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+eq \f(1,x),则f(-1)等于( )
A.-2 B.0 C.1 D.2
答案 A
解析 f(-1)=-f(1)=-(1+1)=-2.
3.已知定义在R上的奇函数f(x)满足f(x+4)=f(x),则f(8)的值为( )
A.-1 B.0 C.1 D.2
答案 B
解析 ∵f(x)为定义在R上的奇函数,∴f(0)=0,
又f(x+4)=f(x),∴f(8)=f(0)=0.
4.(教材改编)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则当x
相关学案
这是一份备考2024届高考数学一轮复习讲义第二章函数第3讲函数的奇偶性周期性与对称性,共11页。
这是一份高考数学一轮复习第2章第3课时函数的奇偶性、周期性与对称性学案,共19页。
这是一份2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性学案,共20页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。