终身会员
搜索
    上传资料 赚现金
    高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系
    立即下载
    加入资料篮
    高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系01
    高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系02
    高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系

    展开
    这是一份高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系,共16页。学案主要包含了知识拓展,思考辨析等内容,欢迎下载使用。


    1.四个公理
    公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
    公理2:过不在一条直线上的三点,有且只有一个平面.
    公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
    公理4:平行于同一条直线的两条直线互相平行.
    2.直线与直线的位置关系
    (1)位置关系的分类
    eq \b\lc\{\rc\ (\a\vs4\al\c1(共面直线\b\lc\{\rc\ (\a\vs4\al\c1(平行直线,相交直线)),异面直线:不同在任何一个平面内,没有公共点))
    (2)异面直线所成的角
    ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
    ②范围:eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2))).
    3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.
    4.平面与平面的位置关系有平行、相交两种情况.
    5.等角定理
    空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
    【知识拓展】
    1.唯一性定理
    (1)过直线外一点有且只有一条直线与已知直线平行.
    (2)过直线外一点有且只有一个平面与已知直线垂直.
    (3)过平面外一点有且只有一个平面与已知平面平行.
    (4)过平面外一点有且只有一条直线与已知平面垂直.
    2.异面直线的判定定理
    经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
    【思考辨析】
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ )
    (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × )
    (3)两个平面ABC与DBC相交于线段BC.( × )
    (4)经过两条相交直线,有且只有一个平面.( √ )
    (5)没有公共点的两条直线是异面直线.( × )
    1.下列命题正确的个数为( )
    ①梯形可以确定一个平面;
    ②若两条直线和第三条直线所成的角相等,则这两条直线平行;
    ③两两相交的三条直线最多可以确定三个平面;
    ④如果两个平面有三个公共点,则这两个平面重合.
    A.0B.1C.2D.3
    答案 C
    解析 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.
    2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )
    A.m∥lB.m∥n
    C.n⊥lD.m⊥n
    答案 C
    解析 由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.
    3.(2017·合肥质检)已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )
    A.若m∥α,n∥α,则m∥n
    B.若m⊥α,n∥β,α⊥β,则m⊥n
    C.若α∩β=l,m∥α,m∥β,则m∥l
    D.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α
    答案 C
    解析 m,n可能的位置关系为平行,相交,异面,故A错误;根据面面垂直与线面平行的性质可知B错误;根据线面平行的性质可知C正确;若m∥n,根据线面垂直的判定可知D错误,故选C.
    4.(教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=2eq \r(3),AD=2eq \r(3),AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.
    答案 45° 60°
    解析 ∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF=eq \f(EF,FG)=eq \f(2\r(3),2\r(3))=1,∴∠EGF=45°,
    ∵AE与BG所成的角等于BF与BG所成的角即∠GBF,tan∠GBF=eq \f(GF,BF)=eq \f(2\r(3),2)=eq \r(3),∴∠GBF=60°.
    5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.
    答案 4
    解析 EF与正方体左、右两侧面均平行.所以与EF相交的侧面有4个.
    题型一 平面基本性质的应用
    例1 (1)(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    答案 A
    解析 若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.
    (2)已知空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=eq \f(1,3)BC,CH=eq \f(1,3)DC.求证:
    ①E、F、G、H四点共面;
    ②三直线FH、EG、AC共点.
    证明 ①连接EF、GH,如图所示,
    ∵E、F分别是AB、AD的中点,
    ∴EF∥BD.
    又∵CG=eq \f(1,3)BC,CH=eq \f(1,3)DC,
    ∴GH∥BD,∴EF∥GH,
    ∴E、F、G、H四点共面.
    ②易知FH与直线AC不平行,但共面,
    ∴设FH∩AC=M,∴M∈平面EFHG,M∈平面ABC.
    又∵平面EFHG∩平面ABC=EG,
    ∴M∈EG,∴FH、EG、AC共点.
    思维升华 共面、共线、共点问题的证明
    (1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.
    (2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.
    (3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
    如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD且BC=eq \f(1,2)AD,BE∥AF且BE=eq \f(1,2)AF,G、H分别为FA、FD的中点.
    (1)证明:四边形BCHG是平行四边形;
    (2)C、D、F、E四点是否共面?为什么?
    (1)证明 由已知FG=GA,FH=HD,
    可得GH綊eq \f(1,2)AD.
    又BC綊eq \f(1,2)AD,∴GH綊BC.
    ∴四边形BCHG为平行四边形.
    (2)解 ∵BE綊eq \f(1,2)AF,G是FA的中点,∴BE綊FG,
    ∴四边形BEFG为平行四边形,∴EF∥BG.
    由(1)知BG綊CH,∴EF∥CH,∴EF与CH共面.
    又D∈FH,∴C、D、F、E四点共面.
    题型二 判断空间两直线的位置关系
    例2 (1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
    A.l与l1,l2都不相交
    B.l与l1,l2都相交
    C.l至多与l1,l2中的一条相交
    D.l至少与l1,l2中的一条相交
    (2)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )
    A.MN与CC1垂直
    B.MN与AC垂直
    C.MN与BD平行
    D.MN与A1B1平行
    (3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)
    答案 (1)D (2)D (3)②④
    解析 (1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.
    (2)连接B1C,B1D1,如图所示,
    则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,
    又BD∥B1D1,∴MN∥BD.
    ∵CC1⊥B1D1,AC⊥B1D1,
    ∴MN⊥CC1,MN⊥AC.
    又∵A1B1与B1D1相交,
    ∴MN与A1B1不平行,故选D.
    (3)图①中,直线GH∥MN;
    图②中,G、H、N三点共面,但M∉面GHN,
    因此直线GH与MN异面;
    图③中,连接MG,GM∥HN,因此GH与MN共面;
    图④中,G、M、N共面,但H∉面GMN,
    因此GH与MN异面.
    所以图②④中GH与MN异面.
    思维升华 空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.
    (1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )
    A.0B.1C.2D.3
    (2)(2016·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( )
    A.a与b异面,b与c异面⇒a与c异面
    B.a与b相交,b与c相交⇒a与c相交
    C.α∥β,β∥γ⇒α∥γ
    D.a⊂α,b⊂β,α与β相交⇒a与b相交
    答案 (1)B (2)C
    解析 (1)在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立.
    (2)如图(1),在正方体中,a、b、c是三条棱所在直线,满足a与b异面,b与c异面,但a∩c=A,故A错误;在图(2)的正方体中,满足a与b相交,b与c相交,但a与c不相交,故B错误;如图(3),α∩β=c,a∥c,则a与b不相交,故D错误.
    题型三 求两条异面直线所成的角
    例3 (2016·重庆模拟)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.
    答案 eq \f(π,3)
    解析 如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,
    所以∠APG为异面直线AP与BD所成的角,
    在△AGP中,AG=GP=AP,
    所以∠APG=eq \f(π,3).
    引申探究
    在本例条件下,若E,F,M分别是AB,BC,PQ的中点,异面直线EM与AF所成的角为θ,求csθ的值.
    解 设N为BF的中点,连接EN,MN,
    则∠MEN是异面直线EM与AF所成的角或其补角.
    不妨设正方形ABCD和ADPQ的边长为4,
    则EN=eq \r(5),EM=2eq \r(6),MN=eq \r(33).
    在△MEN中,由余弦定理得
    cs∠MEN=eq \f(EM2+EN2-MN2,2EM·EN)
    =eq \f(24+5-33,2×2\r(6)×\r(5))
    =-eq \f(1,\r(30))=-eq \f(\r(30),30).
    即csθ=eq \f(\r(30),30).
    思维升华 用平移法求异面直线所成的角的三步法
    (1)一作:根据定义作平行线,作出异面直线所成的角;
    (2)二证:证明作出的角是异面直线所成的角;
    (3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.
    已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( )
    A.eq \f(1,6)B.eq \f(\r(3),6)C.eq \f(1,3)D.eq \f(\r(3),3)
    答案 B
    解析 画出正四面体ABCD的直观图,如图所示.
    设其棱长为2,取AD的中点F,
    连接EF,
    设EF的中点为O,连接CO,
    则EF∥BD,
    则∠FEC就是异面直线CE与BD所成的角.
    △ABC为等边三角形,
    则CE⊥AB,
    易得CE=eq \r(3),
    同理可得CF=eq \r(3),
    故CE=CF.
    因为OE=OF,所以CO⊥EF.
    又EO=eq \f(1,2)EF=eq \f(1,4)BD=eq \f(1,2),
    所以cs∠FEC=eq \f(EO,CE)=eq \f(\f(1,2),\r(3))=eq \f(\r(3),6).
    16.构造模型判断空间线面位置关系
    典例 已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:
    ①若m⊥α,n⊥β,m⊥n,则α⊥β;
    ②若m∥α,n∥β,m⊥n,则α∥β;
    ③若m⊥α,n∥β,m⊥n,则α∥β;
    ④若m⊥α,n∥β,α∥β,则m⊥n.
    其中所有正确的命题是________.
    思想方法指导 本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.
    解析 借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.
    答案 ①④
    1.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则“α∥β”是“a⊥b”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    答案 A
    解析 若a⊂α,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α,
    又a⊂α,所以a⊥b;若a⊥b,a⊂α,b⊥β,
    则b⊥α或b∥α或b⊂α,此时α∥β或α与β相交,
    所以“α∥β”是“a⊥b”的充分不必要条件,故选A.
    2.(2016·福州质检)在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线( )
    A.不存在B.有且只有两条
    C.有且只有三条D.有无数条
    答案 D
    解析 在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1、EF、BC分别有交点P、M、N,如图,故有无数条直线与直线A1B1、EF、BC都相交.
    3.对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )
    A.平行B.相交
    C.垂直D.互为异面直线
    答案 C
    解析 不论l∥α,l⊂α,还是l与α相交,α内都有直线m使得m⊥l.
    4.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )
    A.M一定在直线AC上
    B.M一定在直线BD上
    C.M可能在AC上,也可能在BD上
    D.M既不在AC上,也不在BD上
    答案 A
    解析 由于EF∩HG=M,且EF⊂平面ABC,
    HG⊂平面ACD,所以点M为平面ABC与平面ACD的一个公共点,而这两个平面的交线为AC,
    所以点M一定在直线AC上,故选A.
    5.四棱锥P-ABCD的所有侧棱长都为eq \r(5),底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为( )
    A.eq \f(2\r(5),5)B.eq \f(\r(5),5)
    C.eq \f(4,5)D.eq \f(3,5)
    答案 B
    解析 因为四边形ABCD为正方形,故CD∥AB,则CD与PA所成的角即为AB与PA所成的角,即为∠PAB.
    在△PAB内,PB=PA=eq \r(5),AB=2,利用余弦定理可知cs∠PAB=eq \f(PA2+AB2-PB2,2×PA×AB)=eq \f(5+4-5,2×\r(5)×2)=eq \f(\r(5),5),故选B.
    6.下列命题中,正确的是( )
    A.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线
    B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面
    C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行
    D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条
    答案 D
    解析 对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.
    对于B,设a,b确定的平面为α,显然a⊂α,故B错误.
    对于C,当a⊂α时,直线a与平面α内的无数条直线都平行,故C错误.易知D正确.故选D.
    7.(2016·南昌高三期末)如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB=90°,AC=6,BC=CC1=eq \r(2),P是BC1上一动点,则CP+PA1的最小值为________.
    答案 5eq \r(2)
    解析 连接A1B,将△A1BC1与△CBC1同时展平形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A1BC1中,A1B=eq \r(40)=2eq \r(10),A1C1=6,BC1=2,∴A1Ceq \\al(2,1)+BCeq \\al(2,1)=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,在△A1C1C中,C1C=eq \r(2),A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA1=A1C=eq \r(2+36-12\r(2)cs135°)=eq \r(50)=5eq \r(2).
    8.如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
    ①GH与EF平行;
    ②BD与MN为异面直线;
    ③GH与MN成60°角;
    ④DE与MN垂直.
    以上四个命题中,正确命题的序号是________.
    答案 ②③④
    解析 把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.
    9.(2015·浙江)如图,三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.
    答案 eq \f(7,8)
    解析 如图所示,连接DN,取线段DN的中点K,连接MK,CK.
    ∵M为AD的中点,
    ∴MK∥AN,
    ∴∠KMC为异面直线AN,CM所成的角.
    ∵AB=AC=BD=CD=3,AD=BC=2,
    N为BC的中点,
    由勾股定理求得AN=DN=CM=2eq \r(2),
    ∴MK=eq \r(2).
    在Rt△CKN中,CK=eq \r(\r(2)2+12)=eq \r(3).
    在△CKM中,由余弦定理,得
    cs∠KMC=eq \f(CM2+MK2-CK2,2CM×MK)
    =eq \f(2\r(2)2+\r(2)2-\r(3)2,2×2\r(2)×\r(2))=eq \f(7,8).
    *10.(2017·郑州质检)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是________.
    ①BM是定值;
    ②点M在某个球面上运动;
    ③存在某个位置,使DE⊥A1C;
    ④存在某个位置,使MB∥平面A1DE.
    答案 ③
    解析 取DC中点F,连接MF,BF,MF∥A1D且MF=eq \f(1,2)A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cs∠MFB是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.
    11.如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.
    证明 如图,连接BD,B1D1,
    则BD∩AC=O,
    ∵BB1綊DD1,
    ∴四边形BB1D1D为平行四边形,又H∈B1D,
    B1D⊂平面BB1D1D,
    则H∈平面BB1D1D,
    ∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.
    即D1、H、O三点共线.
    12.如图所示,等腰直角三角形ABC中,∠A=90°,BC=eq \r(2),DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.
    解 如图所示,取AC的中点F,连接EF,BF,
    在△ACD中,E、F分别是AD、AC的中点,
    ∴EF∥CD.
    ∴∠BEF或其补角即为异面直线BE与CD所成的角.
    在Rt△EAB中,AB=AC=1,AE=eq \f(1,2)AD=eq \f(1,2),
    ∴BE=eq \f(\r(5),2).
    在Rt△EAF中,AF=eq \f(1,2)AC=eq \f(1,2),AE=eq \f(1,2),
    ∴EF=eq \f(\r(2),2).
    在Rt△BAF中,AB=1,AF=eq \f(1,2),∴BF=eq \f(\r(5),2).
    在等腰三角形EBF中,cs∠FEB=eq \f(\f(1,2)EF,BE)=eq \f(\f(\r(2),4),\f(\r(5),2))=eq \f(\r(10),10).
    ∴异面直线BE与CD所成角的余弦值为eq \f(\r(10),10).
    *13.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
    (1)D、B、F、E四点共面;
    (2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
    证明 (1)如图所示,因为EF是△D1B1C1的中位线,
    所以EF∥B1D1.
    在正方体ABCD-A1B1C1D1中,B1D1∥BD,
    所以EF∥BD.
    所以EF,BD确定一个平面.
    即D、B、F、E四点共面.
    (2)在正方体ABCD-A1B1C1D1中,
    设平面A1ACC1确定的平面为α,
    又设平面BDEF为β.
    因为Q∈A1C1,所以Q∈α.
    又Q∈EF,所以Q∈β.
    则Q是α与β的公共点,
    同理,P点也是α与β的公共点.
    所以α∩β=PQ.
    又A1C∩β=R,
    所以R∈A1C,则R∈α且R∈β.
    则R∈PQ,故P,Q,R三点共线.
    相关学案

    高考数学一轮复习第7章第3课时空间点、直线、平面之间的位置关系学案: 这是一份高考数学一轮复习第7章第3课时空间点、直线、平面之间的位置关系学案,共30页。

    高考数学一轮复习第6章第2节空间点、直线、平面之间的位置关系学案: 这是一份高考数学一轮复习第6章第2节空间点、直线、平面之间的位置关系学案,共10页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。

    2023届高考数学二轮复习专题三第2讲空间点、线、面的位置关系学案: 这是一份2023届高考数学二轮复习专题三第2讲空间点、线、面的位置关系学案,共12页。学案主要包含了易错提醒等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学一轮复习讲义第8章第3节空间点、线、面及其位置关系
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map