搜索
    上传资料 赚现金
    英语朗读宝

    高三数学一轮复习: 第8章 第5节 椭 圆 试卷

    高三数学一轮复习: 第8章 第5节 椭 圆第1页
    高三数学一轮复习: 第8章 第5节 椭 圆第2页
    高三数学一轮复习: 第8章 第5节 椭 圆第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高三数学一轮复习: 第8章 第5节 椭 圆

    展开

    这是一份高三数学一轮复习: 第8章 第5节 椭 圆,共10页。

    1.椭圆的定义
    (1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
    (2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
    ①当2a>|F1F2|时,M点的轨迹为椭圆;
    ②当2a=|F1F2|时,M点的轨迹为线段F1F2;
    ③当2a0)的左焦点为F1(-4,0),则m=
    ( )
    A.2 B.3
    C.4 D.9
    B [由左焦点为F1(-4,0)知c=4.又a=5,∴25-m2=16,解得m=3或-3.又m>0,故m=3.]
    4.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的eq \f(1,4),则该椭圆的离心率为( )
    A.eq \f(1,3) B.eq \f(1,2)
    C.eq \f(2,3) D.eq \f(3,4)
    B [如图,|OB|为椭圆中心到l的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·eq \f(b,2),所以e=eq \f(c,a)=eq \f(1,2).]
    5.椭圆eq \f(x2,4)+eq \f(y2,3)=1的左焦点为F,直线x=m与椭圆相交于点A,B,当△FAB的周长最大时,△FAB的面积是__________.
    3 [直线x=m过右焦点(1,0)时,△FAB的周长最大,由椭圆定义知,其周长为4a=8,即a=2,
    此时,|AB|=2×eq \f(b2,a)=eq \f(2×3,2)=3,
    ∴S△FAB=eq \f(1,2)×2×3=3.]
    (1)如图8­5­1所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( )
    【导学号:01772310】
    图8­5­1
    A.椭圆 B.双曲线
    C.抛物线 D.圆
    (2)设F1,F2分别是椭圆E:x2+eq \f(y2,b2)=1(00,A≠B)的形式.
    [变式训练1] (1)已知F1,F2是椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的两个焦点,P为椭圆C上的一点,且eq \(PF1,\s\up13(→))⊥eq \(PF2,\s\up13(→)).
    若△PF1F2的面积为9,则b=__________.
    (2)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为__________.
    (1)3 (2)eq \f(x2,4)+eq \f(y2,3)=1 [(1)由定义,|PF1|+|PF2|=2a,且eq \(PF1,\s\up13(→))⊥eq \(PF2,\s\up13(→)),
    ∴|PF1|2+|PF2|2=|F1F2|2=4c2,
    ∴(|PF1|+|PF2|)2-2|PF1||PF2|=4c2,
    ∴2|PF1||PF2|=4a2-4c2=4b2,∴|PF1||PF2|=2b2.
    ∴S△PF1F2=eq \f(1,2)|PF1||PF2|=eq \f(1,2)×2b2=9,因此b=3.
    (2)依题意,设椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0).
    过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|=3,
    ∴点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(3,2)))必在椭圆上,
    ∴eq \f(1,a2)+eq \f(9,4b2)=1.①
    又由c=1,得1+b2=a2.②
    由①②联立,得b2=3,a2=4.
    故所求椭圆C的方程为eq \f(x2,4)+eq \f(y2,3)=1.]
    (2016·全国卷Ⅲ)已知O为坐标原点,F是椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
    A.eq \f(1,3) B.eq \f(1,2)
    C.eq \f(2,3) D.eq \f(3,4)
    A [法一:设点M(-c,y0),OE的中点为N,则直线AM的斜率k=eq \f(y0,a-c),从而直线AM的方程为y=eq \f(y0,a-c)(x+a),令x=0,得点E的纵坐标yE=eq \f(ay0,a-c).
    同理,OE的中点N的纵坐标yN=eq \f(ay0,a+c).
    ∵2yN=yE,∴eq \f(2,a+c)=eq \f(1,a-c),即2a-2c=a+c,
    ∴e=eq \f(c,a)=eq \f(1,3).
    法二:如图,设OE的中点为N,由题意知
    |AF|=a-c,|BF|=a+c,|OF|=c,|OA|=|OB|=a.
    ∵PF∥y轴,
    ∴eq \f(|MF|,|OE|)=eq \f(|AF|,|AO|)=eq \f(a-c,a),eq \f(|MF|,|ON|)=eq \f(|BF|,|OB|)=eq \f(a+c,a).
    又eq \f(|MF|,|OE|)=eq \f(|MF|,2|ON|),即eq \f(a-c,a)=eq \f(a+c,2a),
    ∴a=3c,故e=eq \f(c,a)=eq \f(1,3).]
    [规律方法] 1.与椭圆几何性质有关的问题要结合图形进行分析.
    2.求椭圆离心率的主要方法有:(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.
    [变式训练2] (2015·福建高考)已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于eq \f(4,5),则椭圆E的离心率的取值范围是( )
    A.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(3),2))) B.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(3,4)))
    C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(\r(3),2),1)) D.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,4),1))
    A [根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离为4a=2(|AF|+|BF|)=8,所以a=2.又d=eq \f(|3×0-4×b|,\r(32+-42))≥eq \f(4,5),所以1≤bb>0)的离心率为eq \f(\r(2),2),点(2,eq \r(2))在C上.
    (1)求C的方程;
    (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
    [解] (1)由题意有eq \f(\r(a2-b2),a)=eq \f(\r(2),2),eq \f(4,a2)+eq \f(2,b2)=1,
    解得a2=8,b2=4.3分
    所以C的方程为eq \f(x2,8)+eq \f(y2,4)=1.5分
    (2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).7分
    将y=kx+b代入eq \f(x2,8)+eq \f(y2,4)=1,得
    (2k2+1)x2+4kbx+2b2-8=0.9分
    故xM=eq \f(x1+x2,2)=eq \f(-2kb,2k2+1),yM=k·xM+b=eq \f(b,2k2+1).
    于是直线OM的斜率kOM=eq \f(yM,xM)=-eq \f(1,2k),
    即kOM·k=-eq \f(1,2).
    所以直线OM的斜率与直线l的斜率的乘积为定值.12分
    [规律方法] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.
    2.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=eq \r(1+k2[x1+x22-4x1x2])
    =eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,k2)))[y1+y22-4y1y2])(k为直线斜率).
    [思想与方法]
    1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况.
    2.求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为eq \f(x2,m)+eq \f(y2,n)=1(m>0,n>0,且m≠n)可以避免讨论和烦琐的计算,也可以设为Ax2+By2=1(A>0,B>0,且A≠B),这种形式在解题中更简便.
    3.讨论椭圆的几何性质时,离心率问题是重点,常用方法:
    (1)求得a,c的值,直接代入公式e=eq \f(c,a)求得;
    (2)列出关于a,b,c的齐次方程(或不等式),然后根据b2=a2-c2,消去b,转化成关于e的方程(或不等式)求解.
    [易错与防范]
    1.判断两种标准方程的方法是比较标准形式中x2与y2的分母大小.
    2.注意椭圆的范围,在设椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中用到,也是容易被忽视而导致求最值错误的原因.
    3.椭圆上任意一点M到焦点F的最大距离为a+c,最小距离为a-c.标准方程
    eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)
    eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)
    图形


    范围
    -a≤x≤a
    -b≤y≤b
    -b≤x≤b
    -a≤y≤a
    对称性
    对称轴:坐标轴;对称中心:原点
    顶点
    A1(-a,0),A2(a,0),
    B1(0,-b),B2(0,b)
    A1(0,-a),A2(0,a),
    B1(-b,0),B2(b,0)
    离心率
    e=eq \f(c,a),且e∈(0,1)
    a,b,c的关系
    c2=a2-b2
    椭圆的定义与标准方程
    椭圆的几何性质
    直线与椭圆的位置关系

    相关试卷

    2024年数学高考大一轮复习第九章 §9.5 椭 圆:

    这是一份2024年数学高考大一轮复习第九章 §9.5 椭 圆,共4页。试卷主要包含了已知椭圆C,椭圆C,已知B,0)是圆A等内容,欢迎下载使用。

    2024年数学高考大一轮复习第九章 §9.5 椭 圆:

    这是一份2024年数学高考大一轮复习第九章 §9.5 椭 圆,共6页。

    备战2024高考一轮复习数学(理) 课时验收评价(五十七) 椭 圆:

    这是一份备战2024高考一轮复习数学(理) 课时验收评价(五十七) 椭 圆,共5页。试卷主要包含了点全面广强基训练,重点难点培优训练等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map