初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定第1课时教案设计
展开
这是一份初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定第1课时教案设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
1.掌握平行四边形的判定定理;(重点)
2.综合运用平行四边形的性质与判定解决问题.(难点)
一、情境导入
我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:
1.两组对边分别平行且相等;
2.两组对角分别相等;
3.两条对角线互相平分.
那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?
二、合作探究
探究点一:两组对边分别相等的四边形是平行四边形
如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.
解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.
解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.
探究点二:两组对角分别相等的四边形是平行四边形
如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.
(1)求∠D的度数;
(2)求证:四边形ABCD是平行四边形.
解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.
(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;
(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB=∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.
方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.
探究点三:对角线相互平分的四边形是平行四边形
如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:
(1)△AOC≌△BOD;
(2)四边形AFBE是平行四边形.
解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF即可.
证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵eq \b\lc\{(\a\vs4\al\c1(∠C=∠D,,∠COA=∠DOB,,AO=BO,))∴△AOC≌△BOD(AAS);
(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF=eq \f(1,2)OD,OE=eq \f(1,2)OC,∴EO=FO.又∵AO=BO,∴四边形AFBE是平行四边形.
方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
探究点四:平行四边形的判定定理(1)的应用
【类型一】 利用平行四边形的判定定理(1)证明线段或角相等
如图,在平行四边形ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段DE,BF的位置关系和数量关系,并说明你的结论.
解析:根据平行四边形的性质“对角线互相平分”得出OA=OC,OB=OD.利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而得出DE=BF,DE∥BF.
解:DE=BF,DE∥BF.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OA,OC的中点,∴OE=OF,∴四边形BFDE是平行四边形,∴DE=BF,DE∥BF.
方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.
【类型二】 平行四边形的判定定理(1)的综合运用
如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.
(1)求证:△ABE≌△CDF;
(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.
解析:(1)根据“AAS”可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF.再利用已知得出△ADE≌△CBF,进而得出DE=BF,即可得出四边形BFDE是平行四边形.
(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,eq \b\lc\{(\a\vs4\al\c1(∠DFC=∠BEA,,∠FCD=∠EAB,,AB=CD,))∴△ABE≌△CDF(AAS);
(2)解:四边形BFDE是平行四边形.理由如下:∵△ABE≌△CDF,∴AE=FC,BE=DF.∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA.在△ADE和△CBF中,eq \b\lc\{(\a\vs4\al\c1(AD=BC,,∠DAE=∠BCF,,AE=FC,))∴△ADE≌△CBF(SAS),∴DE=BF,∴四边形BFDE是平行四边形.
方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.
三、板书设计
1.平行四边形的判定定理(1)
两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线相互平分的四边形是平行四边形.
2.平行四边形的判定定理(1)的应用
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
相关教案
这是一份人教版八年级下册18.1.2 平行四边形的判定第1课时教案,共9页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
这是一份人教版八年级下册18.1.2 平行四边形的判定第1课时教案设计,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定第2课时教案,共4页。教案主要包含了自主预习,合作解疑,限时检测等内容,欢迎下载使用。