数学九年级上册22.1.2 二次函数y=ax2的图象和性质第3课时学案
展开第3课时 拱桥问题和运动中的抛物线
学习目标:
1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。
2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。
学习重点:应用二次函数最值解决实际问题中的最大利润。
学习难点:能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变量的取值范围对最值的影响。
学习过程:
一、预备练习:
1、如图所示的抛物线的解析式可设为 ,若AB∥x轴,且AB=4,OC=1,则点A的坐标为 ,点B的坐标为 ;代入解析式可得出此抛物线的解析式为 。
2、 某涵洞是抛物线形,它的截面如图所示。现测得水面宽AB=4m,涵洞顶点O到水面的距离为1m,于是你可推断点A的坐标是 ,点B的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。
二、新课导学:
例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
[来源:学_科_网]
例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?
三、课堂练习:
1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=,当水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是( ) [来源:学科网ZXXK]
A、5米 B、6米; C、8米; D、9米[来源:学。科。网]
2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?(结果精确到0.1m).
3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?
4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.
5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用 表示.[来源:Zxxk.Com]
(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?
(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
[来源:Zxxk.Com]
初中数学人教版九年级上册22.3 实际问题与二次函数优质第1课时学案: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数优质第1课时学案,共4页。学案主要包含了学习目标,重点难点,新知准备,课堂探究,学后反思等内容,欢迎下载使用。
2021学年22.3 实际问题与二次函数第2课时学案设计: 这是一份2021学年22.3 实际问题与二次函数第2课时学案设计,共7页。学案主要包含了知识链接,要点探究,课堂小结等内容,欢迎下载使用。
数学人教版22.3 实际问题与二次函数第3课时导学案: 这是一份数学人教版22.3 实际问题与二次函数第3课时导学案,共3页。学案主要包含了教学目标,教学重难点,教学过程,板书设计,教学反思等内容,欢迎下载使用。