年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学九年级下27.2.1 第4课时 两角分别相等的两个三角形相似 教案

    人教版数学九年级下27.2.1 第4课时 两角分别相等的两个三角形相似 教案第1页
    人教版数学九年级下27.2.1 第4课时 两角分别相等的两个三角形相似 教案第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级下册27.2.1 相似三角形的判定第4课时教案设计

    展开

    这是一份九年级下册27.2.1 相似三角形的判定第4课时教案设计,共4页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)
    2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)
    一、情境导入
    与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A ′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C与∠C′相等吗?对应边的比eq \f(AB,A′B′),eq \f(AC,A′C′),eq \f(BC,B′C′)相等吗?这样的两个三角形相似吗?和同学们交流.
    二、合作探究
    探究点:两角分别相等的两个三角形相似
    【类型一】 利用判定定理证明两个三角形相似
    如图,在等边△ABC中,D为BC边上一点,E为AB边上一点,且∠ADE=60°.
    (1)求证:△ABD∽△DCE;
    (2)若BD=3,CE=2,求△ABC的边长.
    解析:(1)由题有∠B=∠C=60°,利用三角形外角的知识得出∠BAD=∠CDE,即可证明△ABD∽△DCE;(2)根据△ABD∽△DCE,列出比例式,即可求出△ABC的边长.
    (1)证明:在△ABD中,∠ADC=∠B+∠BAD,又∠ADC=∠ADE+∠EDC,而∠B=∠ADE=60°,∴∠BAD=∠CDE.在△ABD和△DCE中,∠BAD=∠CDE,∠B=∠C=60°,∴△ABD∽△DCE;
    (2)解:设AB=x,则DC=x-3,由△ABD∽△DCE,∴eq \f(AB,DC)=eq \f(BD,DE),∴eq \f(x,x-3)=eq \f(3,2),∴x=9.即等边△ABC的边长为9.
    方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.
    变式训练:见《学练优》本课时练习“课堂达标训练” 第5题
    【类型二】 添加条件证明三角形相似
    如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为____________.
    解析:∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,故添加条件∠ABC=∠AED即可求得△ABC∽△AED.同理可得∠ADE=∠C或∠AED=∠B或eq \f(AD,AC)=eq \f(AE,AB)可以得出△ABC∽△AED.故答案为∠ADE=∠C 或∠AED=∠B或eq \f(AD,AC)=eq \f(AE,AB).
    方法总结:熟练掌握相似三角形的各种判定方法是解题关键.
    变式训练:见《学练优》本课时练习“课堂达标训练” 第3题
    【类型三】 相似三角形与圆的综合应用
    如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D,交AE于点G,弦CE交AB于点F,求证:AC2=AG·AE.
    解析:延长CG,交⊙O于点M,连接AM,根据圆周角定理,可证明∠ACG=∠E,根据相似三角形的判定定理,可证明△CAG∽△EAC,根据相似三角形对应边成比例,可得出结论.
    证明:延长CG,交⊙O于点M,连接AM,∵AB⊥CM,∴eq \(AC,\s\up8(︵))=eq \(AM,\s\up8(︵)),∴∠ACG=∠E,又∵∠CAG=∠EAC,∴△CAG∽△EAC,∴eq \f(AC,AE)=eq \f(AG,AC),∴AC2=AG·AE.
    方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻找角的等量关系证明三角形相似.
    变式训练:见《学练优》本课时练习“课后巩固提升”第3题
    【类型四】 相似三角形与四边形知识的综合
    如图,在▱ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.若AB=8,BE=6,AD=7,求BF的长.
    解析:可通过证明∠BAF=∠AED,∠AFB=∠D,证得△ABF∽△EAD,可得出关于AB,AE,AD,BF的比例关系.已知AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,进而求出BF的长.
    解:在平行四边形ABCD中,∵AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.∵BE⊥CD,AB∥CD,∴BE⊥AB,∴∠ABE=90°,∴AE=eq \r(AB2+BE2)=eq \r(82+62)=10.∵△ABF∽△EAD,∴eq \f(BF,AD)=eq \f(AB,AE),∴eq \f(BF,7)=eq \f(8,10),∴BF=5.6.
    方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.
    变式训练:见《学练优》本课时练习“课后巩固提升”第7题
    【类型五】 相似三角形与二次函数的综合
    如图,在△ABC中,∠C=90°,BC=5m,AB=10m.M点在线段CA上,从C向A运动,速度为1m/s;同时N点在线段AB上,从A向B运动,速度为2m/s.运动时间为ts.
    (1)当t为何值时,△AMN的面积为6m2?
    (2)当t为何值时,△AMN的面积最大?并求出这个最大值.
    解析:(1)作NH⊥AC于H,证得△ANH∽△ABC,从而得到比例式,然后用t表示出NH,根据△AMN的面积为6m2,得到关于t的方程求得t值即可;(2)根据三角形的面积计算得到有关t的二次函数求最值即可.
    解:(1)在Rt△ABC中,∵AB2=BC2+AC2,∴AC=5eq \r(3)m.如图,作NH⊥AC于H,∴∠NHA=∠C=90°,∵∠A是公共角,∴△NHA∽△BCA,∴eq \f(AN,AB)=eq \f(NH,BC),即eq \f(2t,10)=eq \f(NH,5),∴NH=t,∴S△AMN= eq \f(1,2)t(5eq \r(3)-t)=6,解得t1=eq \r(3),t2=4eq \r(3)(舍去),故当t为eq \r(3)秒时,△AMN的面积为6m2.
    (2)S△AMN=eq \f(1,2)t(5eq \r(3)-t)=-eq \f(1,2)(t2-5eq \r(3)t+eq \f(75,4))+eq \f(75,2)=-eq \f(1,2)(t-eq \f(5\r(3),2))2+eq \f(75,2),∴当t=eq \f(5\r(3),2)时,S最大值=eq \f(75,2)m2.
    方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题.
    三、板书设计
    1.三角形相似的判定定理:
    两角分别相等的两个三角形相似;
    2.应用判定定理解决简单的问题.
    在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.

    相关教案

    湘教版八年级上册第2章 三角形2.1 三角形教案设计:

    这是一份湘教版八年级上册第2章 三角形2.1 三角形教案设计,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。

    初中数学人教版九年级下册第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第2课时教学设计及反思:

    这是一份初中数学人教版九年级下册第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第2课时教学设计及反思,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    初中27.2.1 相似三角形的判定第3课时教案及反思:

    这是一份初中27.2.1 相似三角形的判定第3课时教案及反思,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map