高考数学一轮复习 第10章 第1节 随机事件的概率
展开这是一份高考数学一轮复习 第10章 第1节 随机事件的概率,共16页。
第十章 概 率
[深研高考·备考导航]
为教师授课、学生学习提供丰富备考资源
[五年考情]
考点
2016年
2015年
2014年
2013年
2012年
随机事件的概率
全国卷Ⅱ·T18
全国卷Ⅱ·T18
全国卷Ⅱ·T19
全国卷·T18
古典概型
全国卷Ⅰ·T3
全国卷Ⅲ·T5
全国卷Ⅰ·T4
全国卷Ⅰ·T13
全国卷Ⅱ·T13
全国卷Ⅰ·T3
全国卷Ⅱ·T13
几何概型
全国卷Ⅱ·T8
[重点关注]
综合近5年的全国卷高考试题,我们发现高考命题在本章呈现以下规律:
1.从考查题型看:一般有1个客观题或1个解答题;从考查分值看,占5~17分,基础题主要考查对基础知识和基本方法的掌握,中档题主要考查应用意识、转化与化归思想及运算求解能力.
2.从考查知识点看:主要考查随机事件的概率、古典概型、几何概型.
3.从命题思路上看:
(1)随机事件的概率与统计知识相结合考查.
(2)概率的计算主要考查古典概型的应用.
[导学心语]
1.全面系统复习,深刻理解知识本质
(1)深刻把握随机事件、互斥事件、对立事件、古典概型、几何概型的概念,复习时可以通过选择一些易错易混的小题进行强化.
(2)重视古典概型概率公式、几何概型概率公式、互斥及对立事件概率公式的理解和应用,注意公式适用的条件.
2.熟练掌握解决以下问题的方法与规律
(1)随机事件的概率、互斥事件概率、对立事件概率的求法.
(2)古典概型概率与几何概型概率的计算.利用强化训练,总结规律方法,提升认识.
3.重视转化与化归思想的应用
(1)需要将实际问题的概率计算转化为某概率类型进而求解.
(2)将古典概型概率计算转化为计数问题;将几何概型概率计算转化为长度、面积的计算;将复杂事件的概率计算转化为互斥事件或对立事件的概率计算等.
(3)将图表信息转化为概率计算需要的数量,进而求解,并重视与统计知识交汇渗透.
第一节 随机事件的概率
————————————————————————————————
[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.
1.概率和频率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.事件的关系与运算
定义
符号表示
包含关系
若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A
(或A⊆B)
相等关系
若B⊇A,且A⊇B,那么称事件A与事件B相等
A=B
并事件
(和事件)
若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)
A∪B
(或A+B)
交事件
(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B
(或AB)
互斥事件
若A∩B为不可能事件,那么称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=∅
且A∪B=Ω
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式.
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)事件发生的频率与概率是相同的.( )
(2)在大量的重复实验中,概率是频率的稳定值.( )
(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )
[答案] (1)× (2)√ (3)√ (4)×
2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
A.① B.②
C.③ D.④
B [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]
3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B.
C. D.
A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.]
4.(2017·郑州调研)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是________.
[从A,B中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,
其中和为4的有两种情况(2,2),(3,1),
故所求事件的概率P==.]
5.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________.(填序号)
①至多有一次中靶;②两次都中靶;③只有一次中靶;④两次都不中靶
④
随机事件间的关系
(2017·中山模拟)从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
C [从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,
其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.
又①②④中的事件可以同时发生,不是对立事件.]
[规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.
2.准确把握互斥事件与对立事件的概念.
(1)互斥事件是不可能同时发生的事件,但可以同时不发生.
(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.
[变式训练1] 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.
【导学号:31222392】
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).
①④ [当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E为必然事件,④正确.由于P(B)=,P(C)=,所以⑤不正确.]
随机事件的频率与概率
(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保 费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
[解] (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.4分
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.8分
(3)由所给数据得
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
10分
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.12分
[规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.
2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.
[变式训练2] (2017·西安质检)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
天气
晴
雨
阴
阴
阴
雨
阴
晴
晴
晴
阴
晴
晴
晴
晴
日期
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
天气
晴
阴
雨
阴
阴
晴
阴
晴
晴
晴
阴
晴
晴
晴
雨
(1)在4月份任选一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
[解] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,2分
以频率估计概率,在4月份任选一天,西安市不下雨的概率为=.5分
(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f==.10分
以频率估计概率,运动会期间不下雨的概率为.12分
互斥事件与对立事件的概率
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
【导学号:31222393】
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).
[解] (1)由题意,得
解得x=15,且y=20.2分
该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.
又==1.9,
∴估计顾客一次购物的结算时间的平均值为1.9分钟.5分
(2)设B,C分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.”7分
将频率视为概率,得P(B)==,
P(C)==.
∵B,C互斥,且=B+C,
∴P()=P(B+C)=P(B)+P(C)=+=,10分
因此P(A)=1-P()=1-=,
∴一位顾客一次购物结算时间不超过2分钟的概率为0.7.12分
[规律方法] 1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.
(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题,多考虑间接法.
[变式训练3] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
[解] (1)P(A)=,
P(B)==,2分
P(C)==.
故事件A,B,C的概率分别为,,.5分
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==,8分
故1张奖券的中奖概率约为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A∪B)=1-=,
故1张奖券不中特等奖且不中一等奖的概率为.12分
[思想与方法]
1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.
3.求复杂的互斥事件的概率一般有两种方法:
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反).
[易错与防范]
1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.
2.正确认识互斥事件与对立事件的关系:对立事件是特殊的互斥事件,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.
3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.
课时分层训练(六十一) 随机事件的概率
A组 基础达标
(建议用时:30分钟)
一、选择题
1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是
( )
A.互斥但非对立事件 B.对立事件
C.相互独立事件 D.以上都不对
A [由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.]
2.(2017·湖南衡阳模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )
A.0.7 B.0.65
C.0.35 D.0.3
C [∵事件A={抽到一等品},且P(A)=0.65,
∴事件“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.]
3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是( )
【导学号:31222394】
A. B.
C. D.1
C [设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥,
故P(C)=P(A)+P(B)=+=.]
4.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是( )
A. B.
C. D.
C [设a,b分别为甲、乙摸出球的编号.由题意,摸球试验共有n=6×6=36种不同结果,满足a=b的基本事件共有6种,
所以摸出编号不同的概率P=1-=.]
5.如图1011所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )
图1011
A. B.
C. D.
C [设被污损的数字为x,则
甲=(88+89+90+91+92)=90,
乙=(83+83+87+99+90+x),
若甲=乙,则x=8.
若甲>乙,则x可以为0,1,2,3,4,5,6,7,
故P==.]
二、填空题
6.给出下列三个命题,其中正确命题有________个.
①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率.
【导学号:31222395】
0 [①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念.]
7.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.
经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569
683 431 257 393 027 556 488 730 113
537 989
据此估计,该运动员三次投篮恰有两次命中的概率为________.
【导学号:31222396】
[20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两次命中的概率为P==.]
8.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=________.
[将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”.
则C,D互斥,
且P(C)=,P(D)=,
∴P(A+B)=P(C+D)=P(C)+P(D)=.]
三、解答题
9.(2015·北京高考节选)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商品
顾客人数
甲
乙
丙
丁
100
√
×
√
√
217
×
√
×
√
200
√
√
√
×
300
√
×
√
×
85
√
×
×
×
98
×
√
×
×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率.
[解] (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的频率为=0.2.5分
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.12分
10.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:
获奖人数
0
1
2
3
4
5
概率
0.1
0.16
x
y
0.2
z
(1)若获奖人数不超过2人的概率为0.56,求x的值;
(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
[解] 记事件“在竞赛中,有k人获奖”为Ak(k∈N,k≤5),则事件Ak彼此互斥.1分
(1)∵获奖人数不超过2人的概率为0.56,
∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56,
解得x=0.3.5分
(2)由获奖人数最多4人的概率为0.96,得
P(A5)=1-0.96=0.04,即z=0.04.8分
由获奖人数最少3人的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,
即y+0.2+0.04=0.44,
解得y=0.2.12分
B组 能力提升
(建议用时:15分钟)
1.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A+发生的概率为( )
A. B.
C. D.
C [掷一个骰子的试验有6种可能结果.
依题意P(A)==,P(B)==,
∴P()=1-P(B)=1-=.
∵表示“出现5点或6点”的事件,
因此事件A与互斥,
从而P(A+)=P(A)+P()=+=.]
2.某城市2017年的空气质量状况如表所示:
污染指数T
30
60
100
110
130
140
概率P
其中污染指数T≤50时,空气质量为优;50
3.(2017·贵阳质检)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)
0
1 000
2 000
3 000
4 000
车辆数(辆)
500
130
100
150
120
(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
[解] (1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12.2分
由表格知,赔付金额大于投保金额即事件A+B发生,
且A,B互斥,
所以P(A+B)=P(A)+P(B)=0.15+0.12=0.27,
故赔付金额大于投保金额的概率为0.27.5分
(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),10分
所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,
因此,由频率估计概率得P(C)=0.24.12分
相关试卷
这是一份高考数学一轮复习检测:第10章第3节 随机事件的概率 含解析,共6页。
这是一份新高考数学一轮复习课时讲练 第10章 第4讲 随机事件的概率 (含解析),共15页。试卷主要包含了事件的分类,事件的关系与运算等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第10章 第4讲 随机事件的概率与古典概型 (含解析),共18页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。