还剩6页未读,
继续阅读
所属成套资源:六年级数学暑假教案+学案
成套系列资料,整套一键下载
- 小六数学第6讲:加乘原理 教案 教案 2 次下载
- 小六数学第7讲:列方程解应用题一 教案 3 次下载
- 小六数学第8讲:列方程解应用题二 教案 4 次下载
- 小六数学第8讲:列方程解应用题二 教案 2 次下载
- 小六数学第9讲:整除和位值原理 教案 教案 1 次下载
小六数学第7讲:列方程解应用题一
展开
这是一份小六数学第7讲:列方程解应用题一,共9页。
在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。它们都是以四则运算和常见的数量关系为基础,通过分析题目里的数量关系,根据四则运算的意义列式解答的。但是,两种解答方法的解题思路却不同。由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。
1.基本概念:
2.列方程解应用题的一般步骤是:
1.理解一元一次方程、二元一次方程(组)及确定方程解的概念,会解一元一次方程、二元一次方程组;
2.能根据题意列方程解答问题。
例1:解下列方程:
(1)(2)
(3)(4)
(5)(6)
(7)(8)
例2:汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)
例3:用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?
例4:箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?
例5:小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100 .”那么聪明的你知道一共有多少只猩猩吗?
例6:从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?
例7:幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分了3个枣,乙班每个小孩比丙班每个小孩少分了5个枣,结果甲班比乙班总共多分了3个枣,乙班比丙班总共多分了5个枣,三个班总共分了多少个枣?
A
1.有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶。问:大、小油桶各几个?
2.小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.小华比小强多买来铅笔__支.
3.小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分。问:小明至多套中小鸡几次?
4.甲、乙、丙、丁四人共做零件270个。如果甲多做10个,乙少做10个,丙的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等,问丙实际做了多少个?
5.有甲乙丙三个人,当甲的年龄是乙的2倍时;丙是22岁,当乙的年龄是丙的2倍,甲是31岁;当甲60岁时,丙是多少岁?
B
6.有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆石子个数就也相等了;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的两倍,问:原来甲堆有多少个石子?
7.如右图,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米。当乙第一次追上甲时在正方形的哪一条边上?
8.小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前1/3时间乘车,后2/3时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?
9.有甲、乙、丙、丁4个人,每三个人的平均年龄加上余下一人的年龄之和分别为29,23,21和17,这4人中最大年龄与最小年龄的差是多少?
10.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封2角,她共用了1元2角2分。那么小萌寄的这3种信的总和最少是多少封?
C
11.五年级二班数学考试的平均分数是85分,其中的人得80分以上(含80分),他们的平均分数是90分。求低于80分的人的平均分。
12.有两个班的小学生要到少年宫参加活动,但只有一辆车接送,甲班的学生坐车从学校出发的同时,乙班的学生开始步行,车到中途某处,让甲班的学生下车步行,车立刻返回接乙班的学生上车并直接开往少年宫,两班学生正好同时到达。已知学生步行速度为每小时4千米,载学生时车速为每小时40千米,空车时速度为每小时50千米。求甲班学生应步行全程的几分之几?(学生上下车时间不计)
13.如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯形的上底是下底长的。那么余下的阴影部分的面积是多少?
14.甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖。问:甲、乙二人谁搬的砖多?多几块?
15.某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人。如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?
1.甲、乙、丙三位同学每人得到相同数目的果汁糖.甲花了若干天将糖吃完,乙每天吃3块,比甲晚1天吃完;丙每天吃4块,比甲早2天吃完,问:他们每人得到多少果汁糖?
2.今年兄弟俩人的岁数加起来是55岁,曾经有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的岁数恰好是弟弟的两倍,问哥哥和弟弟今年年龄分别是多大?
3.有两支香,第一支长厘米;第二支长厘米,同时点燃后,都是平均每分钟燃掉厘米,多少分钟后第一支香的长度是第二支香的长度的倍?
4.小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了.求原来每个人各有几个球?
5.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问,这几天当中有几天有雨?
6.八年前,甲的年龄是乙的年龄的倍;而现在甲的年龄是乙的年龄的倍,那么甲今年多少岁?
7.大强参加6次测验,第三、四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次的平均分比前三次的平均分多3分,那么第四次比第三次多得多少分?
8.一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到,)
1.一个数的4倍加上3乘以0.7的积,和是,则这个数是多少?
2.某校有学生465人,其中女生的比男生的少20人,那么男生比女生少多少人?
3.某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将一组人数调整为二组人数的一半,应从一组调多少人到二组去?
4.现有一笔钱,都是硬币。其中2分硬币比5分硬币多24个。按钱数算,5分的钱数比2分的钱数多3角,还有53个1分硬币,这笔钱一共有多少分?
5.甲、乙、丙共有100本课外书.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数也都是1.乙有书____本.
6.如图,已知CD=5,DE=7,EF=15,FG=6.直线AB,将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG面积是多少?
7.设A和B都是自然数,并且满足:+=,那么,A+B=。
8.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?
在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。它们都是以四则运算和常见的数量关系为基础,通过分析题目里的数量关系,根据四则运算的意义列式解答的。但是,两种解答方法的解题思路却不同。由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。
1.基本概念:
2.列方程解应用题的一般步骤是:
1.理解一元一次方程、二元一次方程(组)及确定方程解的概念,会解一元一次方程、二元一次方程组;
2.能根据题意列方程解答问题。
例1:解下列方程:
(1)(2)
(3)(4)
(5)(6)
(7)(8)
例2:汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)
例3:用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?
例4:箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?
例5:小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100 .”那么聪明的你知道一共有多少只猩猩吗?
例6:从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?
例7:幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分了3个枣,乙班每个小孩比丙班每个小孩少分了5个枣,结果甲班比乙班总共多分了3个枣,乙班比丙班总共多分了5个枣,三个班总共分了多少个枣?
A
1.有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶。问:大、小油桶各几个?
2.小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.小华比小强多买来铅笔__支.
3.小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分。问:小明至多套中小鸡几次?
4.甲、乙、丙、丁四人共做零件270个。如果甲多做10个,乙少做10个,丙的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等,问丙实际做了多少个?
5.有甲乙丙三个人,当甲的年龄是乙的2倍时;丙是22岁,当乙的年龄是丙的2倍,甲是31岁;当甲60岁时,丙是多少岁?
B
6.有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆石子个数就也相等了;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的两倍,问:原来甲堆有多少个石子?
7.如右图,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米。当乙第一次追上甲时在正方形的哪一条边上?
8.小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前1/3时间乘车,后2/3时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?
9.有甲、乙、丙、丁4个人,每三个人的平均年龄加上余下一人的年龄之和分别为29,23,21和17,这4人中最大年龄与最小年龄的差是多少?
10.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封2角,她共用了1元2角2分。那么小萌寄的这3种信的总和最少是多少封?
C
11.五年级二班数学考试的平均分数是85分,其中的人得80分以上(含80分),他们的平均分数是90分。求低于80分的人的平均分。
12.有两个班的小学生要到少年宫参加活动,但只有一辆车接送,甲班的学生坐车从学校出发的同时,乙班的学生开始步行,车到中途某处,让甲班的学生下车步行,车立刻返回接乙班的学生上车并直接开往少年宫,两班学生正好同时到达。已知学生步行速度为每小时4千米,载学生时车速为每小时40千米,空车时速度为每小时50千米。求甲班学生应步行全程的几分之几?(学生上下车时间不计)
13.如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯形的上底是下底长的。那么余下的阴影部分的面积是多少?
14.甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖。问:甲、乙二人谁搬的砖多?多几块?
15.某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人。如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?
1.甲、乙、丙三位同学每人得到相同数目的果汁糖.甲花了若干天将糖吃完,乙每天吃3块,比甲晚1天吃完;丙每天吃4块,比甲早2天吃完,问:他们每人得到多少果汁糖?
2.今年兄弟俩人的岁数加起来是55岁,曾经有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的岁数恰好是弟弟的两倍,问哥哥和弟弟今年年龄分别是多大?
3.有两支香,第一支长厘米;第二支长厘米,同时点燃后,都是平均每分钟燃掉厘米,多少分钟后第一支香的长度是第二支香的长度的倍?
4.小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了.求原来每个人各有几个球?
5.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问,这几天当中有几天有雨?
6.八年前,甲的年龄是乙的年龄的倍;而现在甲的年龄是乙的年龄的倍,那么甲今年多少岁?
7.大强参加6次测验,第三、四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次的平均分比前三次的平均分多3分,那么第四次比第三次多得多少分?
8.一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到,)
1.一个数的4倍加上3乘以0.7的积,和是,则这个数是多少?
2.某校有学生465人,其中女生的比男生的少20人,那么男生比女生少多少人?
3.某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将一组人数调整为二组人数的一半,应从一组调多少人到二组去?
4.现有一笔钱,都是硬币。其中2分硬币比5分硬币多24个。按钱数算,5分的钱数比2分的钱数多3角,还有53个1分硬币,这笔钱一共有多少分?
5.甲、乙、丙共有100本课外书.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数也都是1.乙有书____本.
6.如图,已知CD=5,DE=7,EF=15,FG=6.直线AB,将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG面积是多少?
7.设A和B都是自然数,并且满足:+=,那么,A+B=。
8.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?
相关教案
小六数学第20讲:行程问题: 这是一份小六数学第20讲:行程问题,共9页。
小六数学第20讲:行程问题: 这是一份小六数学第20讲:行程问题,共19页。
小六数学第8讲:列方程解应用题二: 这是一份小六数学第8讲:列方程解应用题二,共10页。