


所属成套资源:人教版七年级上册基础知识讲解与练习
专题1.17 有理数 全章复习与巩固(知识讲解)七年级数学上册基础知识专项讲练(人教版)
展开
这是一份专题1.17 有理数 全章复习与巩固(知识讲解)七年级数学上册基础知识专项讲练(人教版),文件包含第4课蚕变了新模样pptx、第4课蚕变了新模样docx、破茧成蝶mp4、蚕吐丝结茧mp4、观察蚕茧中的蚕蛹mp4等5份课件配套教学资源,其中PPT共25页, 欢迎下载使用。主要包含了学习目标,知识网络,要点梳理,典型例题,总结升华,思路点拨,答案与解析等内容,欢迎下载使用。
1.理解正负数的意义,掌握有理数的概念.
2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.
3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.
4. 理解科学记数法及近似数的相关概念并能灵活应用.
5. 体会数学知识中体现的一些数学思想.
【知识网络】
【要点梳理】
要点一、有理数的相关概念
1.有理数的分类:
(1)按定义分类: (2)按性质分类:
要点诠释:(1)用正数、负数表示相反意义的量;
(2)有理数“0”的作用:
偶数,则幂为正,例如: , .
2.运算律:
(1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba;
(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab)c=a(bc)
(3)分配律:a(b+c)=ab+ac
要点三、有理数的大小比较
比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.
要点四、科学记数法、近似数及精确度
1.科学记数法:把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.例如:200 000=.
2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.
要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.
3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.
要点诠释:
(1)精确度是指近似数与准确数的接近程度.
(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到米,说明结果与实际数相差不超过米,而有效数字往往用来比较几个近似数哪个更精确些.
【典型例题】
类型一、有理数相关概念
例题1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.
【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1
【解析】根据定义,把符合条件的有理数写全.
【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.
举一反三:
【变式】(1)的倒数是 ;的相反数是 ;的绝对值是 .
-(-8)的相反数是 ;的相反数的倒数是_____.
(2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .
(3) 上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.
(4) 若a、b互为相反数,c、d互为倒数,则____ .
(5) 近似数0.4062精确到 位,近似数 5.47×105精确到 位,近似数3.5万精确到 位, 3.4030×105精确到千位是 .
【答案】(1); ; ;-8;2 (2)降价5.8元,70.2 元;(3);(4)3;
(5)万分;千;千;3.40×105
例题2. 如果|x+3|+|y﹣4|=0,求x+2y的值.
【思路点拨】根据非负数的性质,可求出x、y的值,然后将x、y的值代入代数式化简计算即可.
【答案与解析】
解:∵|x+3|+|y﹣4|=0,
∴x+3=0,y﹣4=0,
解得,x=﹣3,y=4,
x+2y=﹣3+4×2=5.
【总结升华】本题考查了绝对值的性质和非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.
例题3.在下列两数之间填上适当的不等号:
________.
【思路点拨】根据“a-b>0,a-b=0,a-b<0分别得到a>b,a=b,a<b”来比较两数的大小.
【答案】<
【解析】法一:作差法
由于,所以
法二:倒数比较法:因为
所以
【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.
举一反三:
【变式】比较大小:(1)________0.001; (2)________-0.68
【答案】(1)< (2)>
类型二、有理数的运算
例题4. 计算:.
【思路点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.
【答案与解析】
解:原式=10+8×﹣2×5
=10+2﹣10
=2.
【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.
举一反三:
【变式】 ﹣33×(﹣5)+16÷(﹣2)3﹣|﹣4×5|+(﹣0.625)2.
【答案】
解:原式=﹣27×(﹣5)+16÷(﹣8)﹣|﹣20|+02
=135﹣2﹣20+0
=113.
类型三、数学思想在本章中的应用
例题5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.
A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a
(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.
(3)转化思想:计算:
【答案与解析】
解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.
所以正确选项为:D.
(2)因为| x|=5,所以x为-5或5
因为|y|=3,所以y为3或-3.
当x=5,y=3时,x-y=5-3=2
当x=5,y=-3时,x-y=5-(-3)=8
当x=-5,y=3时,x-y=-5-3=-8
当x=-5,y=-3时,x-y=-5-(-3)=-2
故(x-y)的值为±2或±8
(3)原式=
【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.
举一反三:
【变式】若a是有理数,|a|-a能不能是负数?为什么?
【答案】解:当a>0时,|a|-a=a-a=0;
当a=0时,|a|-a=0-0=0;
当a<0时,|a|-a=-a-a=-2a>0.
所以,对于任何有理数a,|a|-a都不会是负数.
类型四、规律探索
例题6.将1,,,,,,…,按一定规律排列如下:
请你写出第20行从左至右第10个数是________.
【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.
【答案】
【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是,以此类推向前10个,则得到第20行第10个数是.
【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.作用
举例
表示数的性质
0是自然数、是有理数