搜索
    上传资料 赚现金
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件
    立即下载
    加入资料篮
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件01
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件02
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件03
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件04
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件05
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件06
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件07
    高中数学人教A版 (2019) 必修第一册  5.1.1 任意角 课件08
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第一册5.1 任意角和弧度制教学课件ppt

    展开
    这是一份高中数学人教A版 (2019)必修 第一册5.1 任意角和弧度制教学课件ppt,共24页。PPT课件主要包含了角的分类,逆时针,顺时针,知识点2象限角等内容,欢迎下载使用。

    知识点1 角的分类及加减运算
    2.角的加、减法(1)两角相等:如果两角α、β的旋转方向相同且旋转量相等,就称α=β.(2)角的加法:设α、β是任意两个角,我们规定,把角α的终边旋转角β,这时终边所对应的角是α+β.(3)角的减法:①把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为-α.②角的减法:α-β=α+(-β).
    [微思考]1.当角的始边和终边确定后,这个角就被确定了吗?提示:不确定,因为角的旋转量和旋转方向不确定,因而角不确定.2.时钟经过1小时,时针转动的角的大小是________.
    1.象限角:以角的__________为坐标原点,角的__________为x轴正半轴,建立平面直角坐标系,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.如果角的终边在坐标轴上,称这个角为轴线角.
    [微体验]下列说法:①第一象限角一定不是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中错误的序号为________.解析 由象限角定义可知①②③④都不正确.答案 ①②③④
    1.前提:α表示任意角.2.表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个__________的和.
    知识点3 终边相同的角
    [微体验]思考辨析(1)终边相同的角不一定相等,但相等的角终边一定相同.(  )(2)终边相同的角有无数个,它们相差360°的整数倍.(  )(3)终边相同的角的表示不唯一.(  )解析 由终边相同角的定义可知(1)(2)(3)正确.答案 (1)√ (2)√ (3)√
    (1)下列说法中,正确的是________(填序号).①终边落在第一象限的角为锐角;②锐角是第一象限的角;③第二象限的角为钝角;④小于90°的角一定为锐角;⑤角α与-α的终边关于x轴对称.(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺时针方向旋转820°至OC处,则β=________.
    探究一 与任意角有关的概念辨析
    解析 (1)终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.(2)∠AOC=60°+(-820°)=-760°,β=-(760°-720°)=-40°.答案 (1)②⑤ (2)-40°
    [方法总结]判断角的概念问题的关键与技巧(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.
    [跟踪训练1] 写出图(1),(2)中的角α,β,γ的度数.解 题干图(1)中,α=360°-30°=330°;题干图(2)中,β=-360°+60°+150°=-150°,γ=360°+60°+(-β)=360°+60°+150°=570°.
    (1)下面与-850°12′终边相同的角是(  )A.230°12′   B.229°48′C.129°48′ D.130°12′答案 B 解析 与-850°12′终边相同的角可表示为α=-850°12′+k·360°(k∈Z),当k=3时,α=-850°12′+1 080°=229°48′.
    探究二 终边相同角的表示
    (2)写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.解 直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y=x上的角的集合:S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°,k∈Z}={β|β=45°+n·180°,n∈Z}.∴S中适合-360°≤ β <720°的元素是:45°-2×180°=-315°;45°-1×180°=-135°;45°+0×180°=45°;45°+1×180°=225°;45°+2×180°=405°;45°+3×180°=585°.
    [方法总结]在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.
    [跟踪训练2] 在与角10 030°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)[360°,720°)的角.解 与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z),(1)由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由0°<k·360°+10 030°<360°,得-10 030°<k·360°<-9 670°,解得k=-27,故所求的最小正角为β=310°.(3)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k=-26,故所求的角为β=670°.
    已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.
    探究三 区间角的表示及应用
    解 (1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于-30°到135°之间的与之终边相同的角组成的集合,故可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.
    [变式探究1] 若将本例改为如图所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?解 在0°~360°范围内、阴影部分(包括边界)表示的范围是:150°≤α≤225°,则满足条件的角α为{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.
    [变式探究2] 若将本例改为如图所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?解 由题干图可知满足题意的角的集合为{β|k·360°+60°≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}={β|2k·180°+60°≤β ≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β ≤(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β ≤n·180°+105°,n∈Z}即所求的集合为{β|n·180°+60°≤β ≤n·180°+105°,n∈Z}.
    [方法总结]表示区间角的三个步骤第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α1.象限角的概念是以“角的顶点与坐标原点重合,角的始边与x轴正半轴重合”为前提的,否则不能从终边位置来判断某角是第几象限角.2.“锐角”,“0°~90°的角”,“小于90°的角”,“第一象限角”这几个概念注意区分:锐角是0°<α<90°;0°~90°的角是0°≤α<90°;小于90°的角为α<90°;第一象限的角是{α|k·360°<α<90°+k·360°,k∈Z}.
    相关课件

    高中数学人教A版 (2019)必修 第一册5.1 任意角和弧度制图文ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册5.1 任意角和弧度制图文ppt课件,共22页。PPT课件主要包含了11任意角,导入新课,精彩课堂,典例剖析,课堂练习,①②③④,课堂总结等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册5.1 任意角和弧度制示范课课件ppt: 这是一份高中数学人教A版 (2019)必修 第一册5.1 任意角和弧度制示范课课件ppt,共30页。PPT课件主要包含了新知初探·课前预习,角的分类❶,逆时针,顺时针,α+β,α+-β,x轴的非负半轴,象限角,坐标轴上,答案D等内容,欢迎下载使用。

    人教A版 (2019)必修 第一册5.1 任意角和弧度制课文内容ppt课件: 这是一份人教A版 (2019)必修 第一册5.1 任意角和弧度制课文内容ppt课件,共14页。PPT课件主要包含了延时符,知识小链接,谢谢指导等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map