第九章 9.6双曲线-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
展开
1.双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
(1)当2a<|F1F2|时,P点的轨迹是双曲线;
(2)当2a=|F1F2|时,P点的轨迹是两条射线;
(3)当2a>|F1F2|时,P点不存在.
2.双曲线的标准方程和几何性质
标准方程 | -=1(a>0,b>0) | -=1 (a>0,b>0) | |
图形 | |||
性 质 | 范围 | x≥a或x≤-a,y∈R | x∈R,y≤-a或y≥a |
对称性 | 对称轴:坐标轴 对称中心:原点 | ||
顶点 | A1(-a,0),A2(a,0) | A1(0,-a),A2(0,a) | |
渐近线 | y=±x | y=±x | |
离心率 | e=,e∈(1,+∞),其中c= | ||
实虚轴 | 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长 | ||
a、b、c的关系 | c2=a2+b2 (c>a>0,c>b>0) |
【知识拓展】
巧设双曲线方程
(1)与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).
(2)过已知两个点的双曲线方程可设为+=1(mn<0).
题型一 基础
【例1】判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )
(2)方程-=1(mn>0)表示焦点在x轴上的双曲线.( )
(3)双曲线方程-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.( )
(4)等轴双曲线的渐近线互相垂直,离心率等于.( )
【例2】1、若双曲线-=1 (a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )
A. B.5
C. D.2
2.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2 C.4 D.8
3.下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( )
A.x2-=1 B.-y2=1
C.-x2=1 D.y2-=1
4.设双曲线x2-=1的左,右焦点分别为F1,F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________.
题型二 双曲线的定义及标准方程
命题点1 利用定义求轨迹方程
【例3】 已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为____________________.
命题点2 利用待定系数法求双曲线方程
【例4】根据下列条件,求双曲线的标准方程:
(1)虚轴长为12,离心率为;
(2)焦距为26,且经过点M(0,12);
(3)经过两点P(-3,2)和Q(-6,-7).
命题点3 利用定义解决焦点三角形问题
【例5】已知F1,F2为双曲线C:x2-y2=2的左,右焦点,点P在C上,|PF1|=2|PF2|,则cos ∠F1PF2=________.
【变式练习】
1、本例中若将条件“|PF1|=2|PF2|”改为“∠F1PF2=60°”,则△F1PF2的面积是多少?
2.本例中若将条件“|PF1|=2|PF2|”改为“·=0”,则△F1PF2的面积是多少?
思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程;
(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.
(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为-=λ(λ≠0),再由条件求出λ的值即可.
【同步练习】(1)已知F1,F2为双曲线-=1的左,右焦点,P(3,1)为双曲线内一点,点A在双曲线上,则|AP|+|AF2|的最小值为( )
A.+4 B.-4
C.-2 D.+2
(2)设F1,F2分别为双曲线-=1(a>0,b>0)的左,右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为( )
A. B.
C. D.3
题型三 双曲线的几何性质
【例6】(1)已知椭圆C1:+y2=1(m>1)与双曲线C2:-y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )
A.m>n且e1e2>1 B.m>n且e1e2<1
C.m<n且e1e2>1 D.m<n且e1e2<1
(2)在平面直角坐标系xOy中,双曲线C1:-=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为________.
思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线-=1(a>0,b>0)中,离心率e与双曲线的渐近线的斜率k=±满足关系式e2=1+k2.
【同步练习】1、已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )
A. B. C. D.2
题型四 直线与双曲线的综合问题
【例7】已知椭圆C1的方程为+y2=1,双曲线C2的左,右焦点分别是C1的左,右顶点,而C2的左,右顶点分别是C1的左,右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x或y的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.
(2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.
【同步练习】1、设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( )
A. B.
C.2 D.3
2、已知双曲线x2-=1,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?
1.已知双曲线C:-=1(a>0,b>0)的焦距为10,点P(2,1)在C的一条渐近线上,则C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
2.已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
3.已知双曲线-=1的左,右焦点分别为F1,F2,过F2的直线与该双曲线的右支交于A,B两点,若|AB|=5,则△ABF1的周长为( )
A.16 B.20 C.21 D.26
4.已知F1,F2分别是双曲线-=1(a>0,b>0)的左,右焦点,若在双曲线的右支上存在一点M,使得(+)·=0(其中O为坐标原点),且||=||,则双曲线的离心率为( )
A.-1 B.
C. D.+1
5.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点.若AB的中点在该双曲线上,O为坐标原点,则△AOB的面积为( )
A. B.1
C.2 D.4
6.已知椭圆+=1(a1>b1>0)的长轴长、短轴长、焦距成等比数列,离心率为e1;双曲线-=1(a2>0,b2>0)的实轴长、虚轴长、焦距也成等比数列,离心率为e2,则e1e2等于( )
A. B.1 C. D.2
7.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·<0,则y0的取值范围是( )
A. B.
C. D.
8.已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,+∞) B.(1,2)
C.(1,1+) D.(2,1+)
9.已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=________;b=________.
10.已知点A,B分别是双曲线C:-=1(a>0,b>0)的左,右顶点,点P是双曲线C上异于A,B的另外一点,且△ABP是顶点为120°的等腰三角形,则该双曲线的渐近线方程为________.
11.已知双曲线-=1(a>0,b>0)的左,右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为________.
12.已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A(0,6).当△APF的周长最小时,该三角形的面积为________.
13.中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7.
(1)求这两曲线方程;
(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.
第九章 9.7抛物线-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.7抛物线-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章97抛物线-学生版docx、第九章97抛物线-教师版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。
第九章 9.3圆的方程-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.3圆的方程-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章93圆的方程-学生版docx、第九章93圆的方程-教师版docx等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。
第九章 9.5椭圆-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.5椭圆-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章95椭圆-学生版docx、第九章95椭圆-教师版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。