解答题压轴题训练(三)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
展开解答题压轴题训练(三)
(时间:60分钟 总分:100) 班级 姓名 得分
解答题解题策略:(1)常见失分因素:①对题意缺乏正确的理解,应做到慢审题快做题;②公式记忆不牢,考前一定要熟悉公式、定理、性质等;③思维不严谨,不要忽视易错点;④解题步骤不规范,一定要按课本要求,否则会因不规范答题而失分,避免“对而不全”,如解概率题时,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;⑤计算能力差导致失分多,会做的试题一定不能放过,不能一味求快,⑥轻易放弃试题,难题不会做时,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,中考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作为“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
一、解答题
1.已知正方形,若一个等边三角形的三个顶点均在正方形的内部或边上,则称这个等边三角形为正方形的内等边三角形.
(1)若正方形的边长为10,点在边上.
①当点为边的中点时,求作:正方形的内等边(尺规作图,不写作法,保留作图痕迹);
②若是正方形的内等边三角形,连接,则线段长的最小值是_____,线段长的取值范围是______;
(2)和都是正方形的内等边三角形,当边的长最大时,画出和,
点按逆时针方向排序,连接.找出图中与线段相等的所有线段(不添加字母),并给予证明.
2.如图①,在长方形ABCD中,已知AB=20,AD=12,动点P从点D出发,以每秒2个单位的速度沿线段DC向终点C运动,运动时间为t秒,连接AP,设点D关于AP的对称点为点E.
(1)如图②,射线PE恰好经过点B,试求此时t的值.
(2)当射线PE与边AB交于点Q时,
①请直接写出AQ长的取值范围: ;
②是否存在这样的t的值,使得QE=QB?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.
3.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
(3)在x轴上是否存在点P,使以B、C、P为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
4.如图,在直角坐标系中,直线y=kx+b经过(0,4),(10,﹣4)两点,与x轴交于一点A,与y轴交于点B.
(1)求这条直线的解析式;
(2)求出三角形AOB的面积;
(3)观察图象直接写出:当x取何值时,y大于0?当x取何值时,y小于0?
(4)如果P点是x轴上的一点,且△PAB为等腰三角形,请你直接写出符合条件的P点坐标.
5.已知(均为实数),则的最大值与最小值之差为______.
6.阅读下列两则材料,回答问题:
材料一:我们将与称为一对“对偶式”,因为,所以构造“对偶式”相乘可以有效地将和中的“”去掉.例如:已知,求的值.
解:
材料二:
如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是,,所以,反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.
例如:
所以可将代数式的值看作点(x,y)到点
(1,-1)的距离.
(1)已知方程,其中x≤4.利用材料一:
①直接写出代数式的值:
②解关于x的方程,其中x≤4.
(2)利用材料二,
求代数式的最小值,并求出此时y与x之间的函数关系式,写出x的值范围.
7.如图1,在等边中,为边上一点,于点,为等边三角形.
(1)能否由通过某种变换而得到,写出你的结论并说明理由;
(2)延长交于点,为中点,求证:;
(3)如图2,若,直接写出的值为_________.
8.如图,ABC中,∠C=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t(t>0)秒.
(1)若点P恰好在∠BAC的平分线上,求t的值;
(2)若CBP为等腰三角形,求t的值;
压轴题综合训练(二)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份压轴题综合训练(二)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
压轴题综合训练(三)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份压轴题综合训练(三)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
解答题压轴题训练(四)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份解答题压轴题训练(四)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共6页。试卷主要包含了解答题等内容,欢迎下载使用。