专题12 一次函数解答题压轴训练(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
展开专题12 一次函数解答题压轴训练
(时间:60分钟 总分:120) 班级 姓名 得分
解答题解题策略:(1)常见失分因素:①对题意缺乏正确的理解,应做到慢审题快做题;②公式记忆不牢,考前一定要熟悉公式、定理、性质等;③思维不严谨,不要忽视易错点;④解题步骤不规范,一定要按课本要求,否则会因不规范答题而失分,避免“对而不全”,如解概率题时,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;⑤计算能力差导致失分多,会做的试题一定不能放过,不能一味求快,⑥轻易放弃试题,难题不会做时,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,中考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作为“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
一、解答题
1.在平面直角坐标系中,对于任意两点,定义如下:点M与点N的“直角距离”为,记作.
例如:点与的“直角距离”.
(1)已知点,则在这四个点中,与原点O的“直角距离”等于1的点是__________;
(2)如图,已知点,根据定义可知线段上的任意一点与原点O的“直角距离”都等于1.
若点P与原点O的“直角距离”.请在图中将所有满足条件的点P组成的图形补全;
(3)已知直线,点是x轴上的一个动点.
①当时,若直线上存在点D,满足,求k的取值范围;
②当时,直线与x轴,y轴分别交于点E,F.若线段上任意一点H都满足,直接写出t的取值范围.
2.在平面直角坐标系中,O为坐标原点,四边形的顶点A在x轴的正半轴上,,,点P,点Q分别是边,边上的点,连结,,点B1是点B关于的对称点.
(1)若四边形为长方形,如图1,
①若点P,点Q分别是边,边上中点,求直线的解析式;
②若,且点落在上,求点的坐标;
(2)若四边形为平行四边形,如图2,且,过点作轴,与对角线,边分别交于点E,点F.若,点的横坐标为m,求点的纵坐标(用含m的代数式表示)
3.已知:在平面直角坐标系中,点O为坐标原点,直线y=kx+3与x轴、y轴分别交于点A、点B,且ABO的面积为9.
(1)如图1,求k的值;
(2)如图2,若点P是线段AO上的一动点,过点P作PC∥AB,交y轴于点C,设点P的横坐标为t,线段BC的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)如图3,在(2)的条件下,点D为线段AB的延长线上一点,连接DO,DO与PC的延长线交于点E,若∠BPC=2∠BOD,BP﹣PE=,求点D的坐标.
4.一次函数y=x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内作等边△ABC.
(1)求C点的坐标;
(2)在第二象限内有一点M(m,1),使S△ABM=S△ABC,求M点的坐标;
(3)将△ABC沿着直线AB翻折,点C落在点E处;再将△ABE绕点E顺时针方向旋转15°,点B落在点F处,过点F作FG⊥y轴于G.求△EFG的面积.
5.如图①,在矩形ABCD中,AB=8,AD=4.点P从点A出发,沿A→D→C→D运动,速度为每秒2个单位长度;点Q从点 A出发向点B运动,速度为每秒1个单位长度. P、Q两点同时出发,点Q运动到点B时,两点同时停止运动,设点Q的运动时间为t(秒).连结PQ、AC、CP、CQ.
(1)点P到点C时,t= ; 当点Q到终点时,点P的运动路程为 ;
(2)用含t的代数式表示PD的长;
(3)设△CPQ的面积为,求与t之间的函数关系式;
(4)如图②,当点P在线段DC上运动时,将△APQ沿PQ折叠,点A落在平面内的点A′ 处,PQ与AC交于点E.当与△ACD 的边DC、AC平行时,直接写出t的值.
6.某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元.
(1)求购买的甲、乙两种树苗每棵各需要多少元.
(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的,求甲种树苗数量的取值范围.
(3)在(2)的条件下,如何购买树苗才能使总费用最低?
7.如图,四边形是张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴正半轴上,点C在y轴正半轴上,,点E在边上.
(1)若点N的坐标为,过点N且平行于y轴的直线与交于点M,将纸片沿直线折叠,顶点C恰好落在上,并与上的点G重合.
①求点G、点E的坐标;
②若直线平行于直线,且与长方形有公共点,请直接写出n的取值范围.
(2)若点E为上的一动点,点C关于直线的对称点为G,连接,请求出线段的最小值.
8.如图,正方形边长cm,点在边上,且cm,点从点出发,以5cm/s的速度在、之间往返匀速运动,同时,点从点出发,以2cm/s的速度沿路径匀速运动,当点运动到点时,两点都停止运动,设运动时间为(单位:s).在运动过程中的面积(单位:)随运动时间的变化而变化.
(1)当点运动到点时,求值及此时的面积.
(2)在整个运动过程中,求与的关系式.
9.如图1,在平面直角坐标系中,直线与轴、轴相交于、两点,动点在线段上,将线段绕着点顺时针旋转得到,此时点恰好落在直线上时,过点作轴于点.
(1)求证:;
(2)求经过、两点的一次函数表达式.如图2,将沿轴正方向平移得,当直线经过点时,求点的坐标及的面积;
(3)在轴上是否存在点,使得以、、为顶点的三角形是等腰三角形?若存在,请写出点的坐标.
10.已知小明的家、体育场、文化宫在同一直线上,下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家,图中x表示时间(单位是分钟),y表示到小明家的距离(单位是千米).
请根据相关信息,解答下列问题:
(1)填表:
小明离开家的时间/ | 5 | 10 | 15 | 30 | 45 |
小明离家的距离/ |
|
| 1 |
|
(2)填空:
①小明在文化宫停留了________;
②小明从家到体育场的速度为________;
③小明从文化宫回家的平均速度为_________;
④当小明距家的距离为时,他离开家的时间为_______.
(3)当时,请直接写出y关于x的函数解析式.
11.2020年江苏开通了多条省内高铁,其中一条可以从南京——镇江——扬州——淮安的高铁线路如图①所示,本线路高铁最高速度不超过每分钟5千米.现有甲、乙两车按以下方式营运,甲车从南京匀速行驶去淮安,在镇江和扬州两站都停靠5分钟;乙车从南京匀速行驶直达淮安,乙车比甲车晚出发20分钟.设甲车出发x分钟后行驶的路程为y1千米,图②中的折线O—A—B—C—D—E表示在整个行驶过程中y1与x的函数图像.
(1)甲车速度为 千米/分;
(2)若乙车行驶1小时到达淮安,则乙车出发多久后与甲车相遇?
(3)若乙车行驶的过程中不得与甲车在镇江站与扬州站的站台内相遇,并要在甲之前到达淮安,则乙车速度v乙的范围为 .
12.问题提出
(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;
问题探究
(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;
解决问题
(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.
13.某中学为筹备校庆,准备印制一批纪念册.该纪念册每册需要10张纸,其中4张彩色页,6张黑白页.印刷该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为2200元,印刷费与印数的关系见表.
印数a(千册) | ||
彩色(元/张) | 2.1 | 2 |
黑白(元/张) | 0.8 | 0.5 |
(1)若印制2千册,则共需多少元?
(2)该校先印制了x千册纪念册,后发现统计失误,补印了y()千册纪念册,且补印时无需再次缴纳制版费,学校发现补印的单册造价便宜了,但两次缴纳费用恰好相同.
①用含x的代数式表示y.
②若该校没有统计错误,一次性打印全部纪念册,最少需要多少钱?
14.太湖龙之梦动物世界车行区全程总长7200米,某一时刻一辆私家车和一辆观光车同时驶入车行区,行驶过程中均为匀速行驶,私家车在最后一站骆驼观赏区停车投喂后快速离开.如图,已知在平面直角坐标系中,线段和折线分别为观光车,私家车行驶的路程(米)和行驶时间(分)的函数关系的图象.请结合图象解答下列问题:
(1)私家车在骆驼观赏区停车投喂_______分钟,两车出发后______分首次相遇;
(2)规定:车行区观赏途中,不可停车观赏,以免发生意外.当观光车和私家车进人车行区18分钟后,工作人员从终点处开始步行往回巡逻,若能在私家车停车观赏期间加以制止,则工作人员的速度至少为多少?
(3)两车出发多少分钟时,正好相距600米?
15.如图1,同一直线上依次有,,三个车站,且,间的距离为千米,甲、乙两车分别从,两地同时出发,匀速相向行驶,甲车小时可到达图中站,乙车需小时到达站,乙车的速度是甲车的,甲、两车距站的距离与他们行驶的时间(小时)之间的函数关系如图2所示.
(1)求甲、乙两车的速度分别是多少?
(2)求点,,,四点的坐标,并说明,的坐标表示的实际意义;
(3)若点的坐标是,请说明它表示的实际意义.
初中数学人教版八年级下册19.2.2 一次函数课后测评: 这是一份初中数学人教版八年级下册19.2.2 一次函数课后测评,文件包含专题12一次函数解答题压轴训练解析版八年级数学下学期期末考试压轴题专练人教版尖子生专用docx、专题12一次函数解答题压轴训练原卷版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
专题12 一次函数解答题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份专题12 一次函数解答题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共39页。试卷主要包含了解答题等内容,欢迎下载使用。
专题04 勾股定理解答题压轴训练(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份专题04 勾股定理解答题压轴训练(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共10页。试卷主要包含了解答题等内容,欢迎下载使用。