专题11 一次函数选填题压轴训练(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
展开专题11 一次函数选填题压轴训练
(时间:60分钟 总分:120) 班级 姓名 得分
选择题解题策略:(1)注意审题。把题目多读几遍,弄清这道题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题目。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错、易混点。
(5)方法多样,不择手段。中考试题凸显能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两道小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”,也有25%的正确率。
(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
填空题解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;
二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;
三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
一、单项选择题:(本题共20小题,每小题3分,共60分.在每小题给出的四个
选项中,只有一项是符合题意要求的.)
1.如图,在平面直角坐标系中,点,,,…,在轴上,点,,…,在直线上,若点的坐标为,且,,…,都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为,,..,,则可表示为( )
A. B.
C. D.
2.如图,边长为1的等边三角形开始在边长为2的等边三角形左边,点与点重合,大三角形固定不动,然后把小三角形沿边自左向右平移,直至移出大三角形外停止(点与点重合),设小三角形移动距离为,两个三角形重叠面积为,则关于的函数图象是( )
A. B.
C. D.
3.按如图所示的流程输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据.现要求使任意一组在20~100(含20和100)之间的数据,变换成一组新数据后能满足:①新数据能取得60~100(含60和100)之间的所有值;②新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.可以满足上述两个要求的函数表达式为( )
A. B. C. D.
4.若直线与轴的交点位于轴正半轴上,则它与直线交点的横坐标的取值范围为( )
A. B. C. D.
5.为了提升城市品质,改善生态环境,落实民生实事,重庆市利用城市空地、荒地等修建了多个社区公园,为市民提供更多集休闲、娱乐、健身为一体的活动场所.一天晚饭后,小新和小达在小区附近的清溪公园散步,他们分别从公园入口和银杏林同时出发,匀速相向而行.小新到达银杏林后,放慢了速度,继续匀速向湖心亭前进,到达湖心亭后立即调头,以变慢后的速度匀速返回银杏林等待小达(公园入口、银杏林和湖心亭依次在同一直线上).小达走到公园入口后立即调头,以原速匀速返回银杏林与小新会合.小新和小达相距的路程y(米)与小达从银杏林出发的时间x(分)之间的函数关系如图所示(其中DE∥BG,B、C、D三点不在同一直线上,两人调头的时间忽略不计),则下列4个说法:
①a=22.5;
②刚出发时,小新的速度为80米/分;
③图象中线段DE表示小新和小达两人停止了运动;
④公园入口到湖心亭的距离为2250米,其中正确说法的个数是( )
A.1 B.2 C.3 D.4
6.如图,在平面直角坐标系中,一次函数的图象与轴、轴分别相交于点、,点的坐标为,且点在的内部,则的取值范围是( )
A. B. C. D.或
7.如图,在△ABC中,AC=BC,∠ACB=90°,S△ABC=4cm2.正方形CDEF的顶点D,F分别在AC,BC边上,设CD=CF=x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )
A. B.
C. D.
8.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论是( )
A.①③ B.①④ C.②③ D.②④
9.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1的长为半径画弧,交直线y=x于点B1;过点B1作B1A2∥y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y=x于点B3;…按如此规律进行下去,点B2021的坐标为( )
A.(22021,22021) B.(22021,22020)
C.(22020,22021) D.(22022,22021)
10.在平面直角坐标系中,将函数的图象向上平移个单位长度,使其与的交点在位于第二象限,则的取值范围为( )
A. B. C. D.
11.如图,在平面直角坐标系中,已知A(5,0)点P为线段OA上任意一点.在直线y=x上取点E,使PO=PE,延长PE到点F,使PA=PF,分别取OE、AF中点M、N,连结MN,则MN的最小值是( )
A.2.5 B.2.4 C.2.8 D.3
12.已知函数若,则下列说法错误的是( )
A.当时,有最小值0.5 B.当时,有最大值1.5
C.当时,有最小值1 D.当时,有最大值2
二、填空题
13.如图,直线y=x+b(b>0)与x轴、y轴分别交于点A、B,点P在第一象限内,∠OPB=45o,则线段OP、AP、BP满足的数量关系式为______.
14.如图在平面直角坐标系中,直线的图像分别与y轴和x轴交于点A,点B.定点P的坐标为,点Q是y轴上任意一点,则的最小值为__________.
15.如图,在平面直角坐标系中,点,直线与x轴交于点B,以为边作等边,过点作轴,交直线l于点,以为边作等边,过点作轴,交直线l于点,以为边作等边,以此类推……,则点的纵坐标是__________.
16.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn,则第4个正方形的边长及S3的值分别为___.
17.甲、乙两辆冷链运输车从某公司疫苗存储库同时出发,各自将一批疫苗运往省疾控中心疫苗仓储库,他们将疫苗运到省疾控中心疫苗仓储库后,省疾控中心将按规定流程对疫苗的质量进行检查验收,检查验收及卸货的时间共为30分钟,然后甲、乙两辆冷链运输车又各自按原路原速返回公司疫苗存储库,在整个过程中,假设甲、乙两辆冷链运输车均保持各自的速度匀速行驶,且甲车的速度比乙车的速度快.甲、乙两车相距的路程(千米)与甲车离开公司疫苗存储库的时间(小时)之间的关系如图所示,则在甲车返回到公司疫苗存储库时,乙车距公司疫苗存储库的距离为________千米.
18.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图,则乙在行驶过程中,直接写出当x=_____时距甲5km.
19.如图,将一块等腰直角三角板放置在平面直角坐标系中,,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,所在直线的函数表达式是,若保持的长不变,当点A在y轴的正半轴滑动,点C随之在x轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是_______.
20.如图,在平面直角坐标系中,正方形的边长为5,边分别在x轴,y轴的正半轴上.把正方形的内部及边上,横、纵坐标均为整数的点称为整点.直线:,直线:经过直线上动点P.
(1)当时,请写出直线上的整点__________.
(2)在点P的移动过程中,与正方形围成的图形中有一个图形(包括边界)恰好有9个整点时,b的取值范围是_________.
21.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.
若将这个“L”形沿y轴上下平移,当AD+DE+BE的值最小时,E点坐标为_____;
若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为_____.
22.如图,平行四边形的边在轴上,点、在第二象限,点、点、点,将直线平移使它平分的面积,则的值为______.
23.、两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中,表示两人离地的距离与时间的关系,结合图象信息,下列结论错误的是______.
①是表示甲离地的距离与时间关系的图象;
②乙的速度是;
③两人相遇时间在;
④当甲到达终点时乙距离终点还有.
人教版八年级下册19.2.2 一次函数当堂检测题: 这是一份人教版八年级下册19.2.2 一次函数当堂检测题,文件包含专题11一次函数选填题压轴训练解析版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx、专题11一次函数选填题压轴训练原卷版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
人教版八年级下册17.1 勾股定理课堂检测: 这是一份人教版八年级下册17.1 勾股定理课堂检测,文件包含专题03勾股定理选填题压轴训练解析版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx、专题03勾股定理选填题压轴训练原卷版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
专题16 数据的分析选填题压轴训练(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份专题16 数据的分析选填题压轴训练(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共3页。试卷主要包含了单项选择题,填空题等内容,欢迎下载使用。