2020年山东省枣庄市中考数学试卷
展开
这是一份2020年山东省枣庄市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年山东省枣庄市中考数学试卷
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.
1.(3分)-12的绝对值是( )
A.-12 B.﹣2 C.12 D.2
2.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
3.(3分)计算-23-(-16)的结果为( )
A.-12 B.12 C.-56 D.56
4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是( )
A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1
5.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( )
A.49 B.29 C.23 D.13
6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
A.8 B.11 C.16 D.17
7.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是( )
A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
8.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是( )
A. B.
C. D.
9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a-b2,这里等式右边是实数运算.例如:1⊗3=11-32=-18.则方程x⊗(﹣2)=2x-4-1的解是( )
A.x=4 B.x=5 C.x=6 D.x=7
10.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB
=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )
A.(-3,3) B.(﹣3,3) C.(-3,2+3) D.(﹣1,2+3)
11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A.33 B.4 C.5 D.6
12.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
①ac<0;
②b2﹣4ac>0;
③2a﹣b=0;
④a﹣b+c=0.
其中,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.
13.(4分)若a+b=3,a2+b2=7,则ab= .
14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a= .
15.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B= .
16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= .
三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.
19.(8分)解不等式组4(x+1)≤7x+13,x-4<x-83,并求它的所有整数解的和.
20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.
(1)观察下列多面体,并把下表补充完整:
名称
三棱锥
三棱柱
正方体
正八面体
图形
顶点数V
4
6
8
棱数E
6
12
面数F
4
5
8
(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式: .
21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组
频数
1.2≤x<1.6
a
1.6≤x<2.0
12
2.0≤x<2.4
b
2.4≤x<2.8
10
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ;
(2)样本成绩的中位数落在 范围内;
(3)请把频数分布直方图补充完整;
(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?
22.(8分)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.
(1)求反比例函数的表达式;
(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.
23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.
(1)求证:BF是⊙O的切线;
(2)若⊙O的直径为4,CF=6,求tan∠CBF.
24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;
(3)若CD=2,CF=2,求DN的长.
25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
2020年山东省枣庄市中考数学试卷
参考答案与试题解析
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.
1.(3分)-12的绝对值是( )
A.-12 B.﹣2 C.12 D.2
【解答】解:-12的绝对值为12.
故选:C.
2.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°﹣30°=15°.
故选:B.
3.(3分)计算-23-(-16)的结果为( )
A.-12 B.12 C.-56 D.56
【解答】解:-23-(-16)=-23+16=-12.
故选:A.
4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是( )
A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1
【解答】解:A、|a|>1,故本选项错误;
B、∵a<0,b>0,∴ab<0,故本选项错误;
C、a+b<0,故本选项错误;
D、∵a<0,∴1﹣a>1,故本选项正确;
故选:D.
5.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( )
A.49 B.29 C.23 D.13
【解答】解:用列表法表示所有可能出现的情况如下:
共有9种可能出现的结果,其中两次都是白球的有4种,
∴P(两次都是白球)=49,
故选:A.
6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
A.8 B.11 C.16 D.17
【解答】解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=11.
故选:B.
7.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是( )
A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,
则面积是(a﹣b)2.
故选:C.
8.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是( )
A. B.
C. D.
【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.
故选:B.
9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a-b2,这里等式右边是实数运算.例如:1⊗3=11-32=-18.则方程x⊗(﹣2)=2x-4-1的解是( )
A.x=4 B.x=5 C.x=6 D.x=7
【解答】解:根据题意,得1x-4=2x-4-1,
去分母得:1=2﹣(x﹣4),
解得:x=5,
经检验x=5是分式方程的解.
故选:B.
10.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB
=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )
A.(-3,3) B.(﹣3,3) C.(-3,2+3) D.(﹣1,2+3)
【解答】解:如图,过点B′作B′H⊥y轴于H.
在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,
∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=3,
∴OH=2+1=3,
∴B′(-3,3),
故选:A.
11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A.33 B.4 C.5 D.6
【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,
∴AF=AB,∠AFE=∠B=90°,
∴EF⊥AC,
∵∠EAC=∠ECA,
∴AE=CE,
∴AF=CF,
∴AC=2AB=6,
故选:D.
12.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
①ac<0;
②b2﹣4ac>0;
③2a﹣b=0;
④a﹣b+c=0.
其中,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:抛物线开口向下,a<0,对称轴为x=-b2a=1,因此b>0,与y轴交于正半轴,因此c>0,
于是有:ac<0,因此①正确;
由x=-b2a=1,得2a+b=0,因此③不正确,
抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,
由对称轴x=1,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,
综上所述,正确的结论有①②④,
故选:C.
二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.
13.(4分)若a+b=3,a2+b2=7,则ab= 1 .
【解答】解:(a+b)2=32=9,
(a+b)2=a2+b2+2ab=9.
∵a2+b2=7,
∴2ab=2,
ab=1,
故答案为:1.
14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a= ﹣1 .
【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,
∵a﹣1≠0,
∴a=﹣1.
故答案为﹣1.
15.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B= 27° .
【解答】解:∵PA切⊙O于点A,
∴∠OAP=90°,
∵∠P=36°,
∴∠AOP=54°,
∴∠B=12∠AOP=27°.
故答案为:27°.
16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5 m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
【解答】解:∵AB=AC=2m,AD⊥BC,
∴∠ADC=90°,
∴AD=AC•sin50°=2×0.77≈1.5(m),
故答案为1.5.
17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 85 .
【解答】解:如图,连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,且BD⊥EF,
∴四边形BEDF为菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF=8-42=2,
由勾股定理得:DE=OD2+OE2=42+22=25,
∴四边形BEDF的周长=4DE=4×25=85,
故答案为:85.
18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= 6 .
【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,
∴a=4,b=6,
∴该五边形的面积S=4+12×6﹣1=6,
故答案为:6.
三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.
19.(8分)解不等式组4(x+1)≤7x+13,x-4<x-83,并求它的所有整数解的和.
【解答】解:4(x+1)≤7x+13①x-4<x-83②,
由①得,x≥﹣3,
由②得,x<2,
所以,不等式组的解集是﹣3≤x<2,
所以,它的整数解为:﹣3,﹣2,﹣1,0,1,
所以,所有整数解的和为﹣5.
20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.
(1)观察下列多面体,并把下表补充完整:
名称
三棱锥
三棱柱
正方体
正八面体
图形
顶点数V
4
6
8
6
棱数E
6
9
12
12
面数F
4
5
6
8
(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式: V+F﹣E=2 .
【解答】解:(1)填表如下:
名称
三棱锥
三棱柱
正方体
正八面体
图形
顶点数V
4
6
8
6
棱数E
6
9
12
12
面数F
4
5
6
8
(2)∵4+4﹣6=2,
6+5﹣9=2,
8+6﹣12=2,
6+8﹣12=2,
…,
∴V+F﹣E=2.
即V、E、F之间的关系式为:V+F﹣E=2.
故答案为:6,9,12,6,V+F﹣E=2.
21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组
频数
1.2≤x<1.6
a
1.6≤x<2.0
12
2.0≤x<2.4
b
2.4≤x<2.8
10
请根据图表中所提供的信息,完成下列问题:
(1)表中a= 8 ,b= 20 ;
(2)样本成绩的中位数落在 2.0≤x<2.4 范围内;
(3)请把频数分布直方图补充完整;
(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?
【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,
故答案为:8,20;
(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,
故答案为:2.0≤x<2.4;
(3)补全频数分布直方图如图所示:
(4)1200×1050=240(人),
答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.
22.(8分)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.
(1)求反比例函数的表达式;
(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.
【解答】解:(1)联立y=12x+5①和y=﹣2x并解得:x=-2y=4,故点A(﹣2.4),
将点A的坐标代入反比例函数表达式得:4=k-2,解得:k=﹣8,
故反比例函数表达式为:y=-8x②;
(2)联立①②并解得:x=﹣2或﹣8,
当x=﹣8时,y=12x+5=1,故点B(﹣8,1),
设y=12x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,
则S△AOB=S△AOC﹣S△BOC=12×OC•AM-12OC•BN=12×4×10-12×10×1=15.
23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.
(1)求证:BF是⊙O的切线;
(2)若⊙O的直径为4,CF=6,求tan∠CBF.
【解答】(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴2∠1=∠CAB.
∵∠BAC=2∠CBF,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线;
(2)解:过C作CH⊥BF于H,
∵AB=AC,⊙O的直径为4,
∴AC=4,
∵CF=6,∠ABF=90°,
∴BF=AF2-AB2=102-42=221,
∵∠CHF=∠ABF,∠F=∠F,
∴△CHF∽△ABF,
∴CHAB=CFAF,
∴CH4=64+6,
∴CH=125,
∴HF=CF2-CH2=62-(125)2=6215,
∴BH=BF﹣HF=221-6215=4215,
∴tan∠CBF=CHBH=1254215=217.
24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;
(3)若CD=2,CF=2,求DN的长.
【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,
∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,
∴∠DCF=∠DCE=135°,
在△DCF和△DCE中,
CF=CE∠DCF=∠DCEDC=DC,
∴△DCF≌△DCE(SAS)
∴DE=DF;
(2)证明:∵∠DCF=135°,
∴∠F+∠CDF=45°,
∵∠FDE=45°,
∴∠CDE+∠CDF=45°,
∴∠F=∠CDE,
∵∠DCF=∠DCE,∠F=∠CDE,
∴△FCD∽△DCE,
∴CFCD=CDCE,
∴CD2=CE•CF;
(3)解:过点D作DG⊥BC于G,
∵∠DCB=45°,
∴GC=GD=22CD=2,
由(2)可知,CD2=CE•CF,
∴CE=CD2CF=22,
∵∠ECN=∠DGN,∠ENC=∠DNG,
∴△ENC∽△DNG,
∴CNNG=CEDG,即2-NGNG=222,
解得,NG=23,
由勾股定理得,DN=DG2+NG2=253.
25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
【解答】解:(1)将点A、B的坐标代入抛物线表达式得9a-3b+4=016a+4b+4=0,解得a=-13b=13,
故抛物线的表达式为:y=-13x2+13x+4;
(2)由抛物线的表达式知,点C(0,4),
由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
设点M(m,0),则点P(m,-13m2+13m+4),点Q(m,﹣m+4),
∴PQ=-13m2+13m+4+m﹣4=-13m2+43m,
∵OB=OC,故∠ABC=∠OCB=45°,
∴∠PQN=∠BQM=45°,
∴PN=PQsin45°=22(-13m2+43m)=-26(m﹣2)2+223,
∵-26<0,故当m=2时,PN有最大值为223;
(3)存在,理由:
点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
①当AC=CQ时,过点Q作QE⊥y轴于点E,
则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
解得:m=±522(舍去负值),
故点Q(522,8-522);
②当AC=AQ时,则AQ=AC=5,
在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
故点Q(1,3);
③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=252(舍去);
综上,点Q的坐标为(1,3)或(522,8-522).
相关试卷
这是一份2022年山东省枣庄市中考数学试卷,共6页。试卷主要包含了选择题,填空题,羊二,直金十两.牛二,解答题等内容,欢迎下载使用。
这是一份2023年山东省枣庄市中考数学试卷,共7页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2023年山东省枣庄市中考数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。