![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第1页](http://www.enxinlong.com/img-preview/2/3/12002465/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第2页](http://www.enxinlong.com/img-preview/2/3/12002465/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第3页](http://www.enxinlong.com/img-preview/2/3/12002465/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第4页](http://www.enxinlong.com/img-preview/2/3/12002465/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第5页](http://www.enxinlong.com/img-preview/2/3/12002465/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第6页](http://www.enxinlong.com/img-preview/2/3/12002465/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪教版数学八上19.7《直角三角形全等的判定》公开课课件第7页](http://www.enxinlong.com/img-preview/2/3/12002465/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
沪教版 (五四制)八年级上册第十九章 几何证明第三节 直角三角形19.7 直角三角形全等的判定课文ppt课件
展开这是一份沪教版 (五四制)八年级上册第十九章 几何证明第三节 直角三角形19.7 直角三角形全等的判定课文ppt课件,共15页。PPT课件主要包含了提出问题,学习目标,观察实验--探索新知,直角边公理,或“HL”,条件1,条件2,几何语言,现学现用,第1题图等内容,欢迎下载使用。
学习准备:1、判定两个三角形全等的方法: 、 、 、____. 2、如图,在Rt△ABC中,直角边是 、 , 斜边是____. 3、如图,AB⊥BE于B,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等” )根据 (用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等” )根据 (用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等” )根据 (用简写法)(4)若AB=DE, AC=DF则△ABC与△DEF (填“全等”或“不全等” )根据 (用简写法)
舞台背景的形状是两个直角三角形,工作人员想知道两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住,无法测量。
(1) 你能帮他想个办法吗?
根据SAS可测量其余两边与这两边的夹角。
根据ASA,AAS可测量对应一边和一锐角
(2)如果他只带一个卷尺,能完成这个任务吗?
他用卷尺只能量出斜边和一条直角边,如果它们对应相等,能证明这两个直角三角形全等吗?
1. 通过演示实验,探索直角三角形全等的条件;2. 学会用斜边直角边公理判定直角三角形全等;3. 体验用所学知识解决数学问题的乐趣
1、观察老师的操作过程,你有什么发现?你能得到什么结论?
斜边和一条直角边对应相等的两个直角三角形全等.
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”
斜边、直角边公理 (HL)
1、已知如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,垂足分别为C,D,AD=BC 求证:△ABC≌△BAD.
证明两个直角三角形全等,首先考虑用HL定理
2、如图,在△ABC中,AB=AC,AD是BC边上的高,求证:BD=CD,∠BAD=∠CAD
点拨:此类问题将证明线段和角相等转化为证三角形全等
1.如图已知CE⊥AB,DF⊥AB,AC=BD,AF=BE,则CE=DF。请说明理由。
2.如图,AB=AE,BC=ED,AF⊥CD,∠B=∠E.试说明:F是CD的中点.
已知△ABC中,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,请你添加一个条件使DE=AD+BE成立。
变式:若直线MN绕点C旋转到此位置时,你添加的条件能说明DE=BE-AD成立吗?
1、斜边、直角边(HL)定理:斜边和一条直角边对应相等的两个三角形全等
2、证明两个直角三角形全等,不仅可以用HL定理,还可以用SAS、ASA、SSS、AAS定理来证明两个三角形全等
相关课件
这是一份数学八年级上册19.7 直角三角形全等的判定精品教学作业课件ppt,文件包含197《直角三角形全等的判定》作业解析版docx、197《直角三角形全等的判定》教材配套课件pptx、197《直角三角形全等的判定》作业原卷版docx等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。
这是一份浙教版八年级上册2.8 直角三角形全等的判定精品ppt课件,文件包含浙教版数学八上28直角三角形全等的判定课件pptx、浙教版数学八上28直角三角形全等的判定练习docx、浙教版数学八上28直角三角形全等的判定教案doc等3份课件配套教学资源,其中PPT共15页, 欢迎下载使用。
这是一份初中数学浙教版八年级上册2.8 直角三角形全等的判定一等奖课件ppt,共27页。PPT课件主要包含了情境引入,学习目标,问题引入,∴BCB´C´,几何语言,知识精讲,总结提升,SAS,AAS,针对练习等内容,欢迎下载使用。